
 Euro6IX Consortium

Title: Document Version:

Technical Report TR4.1A.6
QoS over IPv6. Tests and Results 1.4

Project Number: Project Acronym: Project Title:

IST-2001-32161 Euro6IX European IPv6 Internet Exchanges Backbone

Contractual Delivery Date: Actual Delivery Date: Deliverable Type* - Security**:

30/12/2002 25/02/2003 R – PU

* Type: P - Prototype, R - Report, D - Demonstrator, O - Other
** Security Class: PU- Public, PP – Restricted to other programme participants (including the Commission), RE – Restricted to a group

defined by the consortium (including the Commission), CO – Confidential, only for members of the consortium (including
the Commission)

Responsible and Editor/Author: Organization: Contributing WP:

César Olvera Consulintel WP4

Authors (organizations) in alphabetical order:

Jordi Palet (Consulintel), Miguel Angel Morales (Consulintel), Álvaro Vives (Consulintel), Francisco
Fontes (PTIN), Carlos Parada (PTIN), Lothar Grimm (T-Nova), Roland Schott (T-Nova), Stefan
Spiewok (T-Nova), Guido Steinkamp (T-Nova), Javier Sedano (UPM).

Abstract:

This document summarizes QoS over IPv6 activities carried out during first year on Euro6IX project in
the context of WP4 activities A4.1. We have analyzed the main IPv6 QoS terms, in special about
DiffServ, and the current status of standardization of IPv6 Traffic Class and Flow Label fields. We
have analyzed public information about available IPv6 QoS tools for both open-source and commercial
solutions. We have defined the two general IPv6 QoS, and according these, we performed several
conformance tests to assess the IPv6 QoS model working and to test the capabilities in order to provide
differentiated services in Euro6IX. The results of the evaluation provided considerations and
experience for our next internal and external QoS deployments and trials.

Keywords:

DiffServ, Euro6IX, Flow Label, Packet Classification, QoS test-beds and solutions, Traffic Class.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 2 of 86

Revision History

Revision Date Description Author (Organization)

v1.0 28/11/2002 Document creation César Olvera (Consulintel)

v1.1 05/12/2002 Integration of contributions and updated César Olvera (Consulintel)

v1.2 12/12/2002 Integration of contributions and updated César Olvera (Consulintel)

v1.3 19/12/2002 Integration of contributions and minor changes César Olvera (Consulintel)

v1.4 25/02/2003 Logos added an PDF generated Jordi Palet (Consulintel)

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 3 of 86

Table of Contents
1. QoS over IPv6: Introduction ..6

1.1 Objective...6

1.2 Relevance for IPv6 deployment..6

1.3 Technical Approach ..6

1.4 Background ..8

2. QoS Support in IPv6...11

2.1 8-bits Traffic Class Field...11

2.2 20-bits Flow Label Field..11

3. IPv6 QoS Roadmap in the IETF..12

4. IPv6 QoS Solutions to Analyse...14

4.1 Open-Source Solutions ..14
4.1.1 BSD and KAME..14
4.1.2 BSD and INRIA...15
4.1.3 Linux..15
4.1.4 Zebra..15
4.1.5 Multi-Threaded Routing Toolkit ...15

4.2 Commercial Solutions ...15
4.2.1 6WIND ..15
4.2.2 Ericsson Telebit ...16
4.2.3 Hitachi ...16
4.2.4 NEC ...16

5. Designed Test Plan ...17

5.1 DiffServ...17
5.1.1 Technical Analysis of DiffServ ...17
5.1.2 Implementations of DiffServ ...17

5.2 QoS on FreeBSD ..17

5.3 QoS on Hitachi routers..18

5.4 General Test Scenarios..18

6. Realized Tests and Results..20

6.1 Testbed 1...20

6.2 Testbed 2...20

6.3 Testbed 3...21

6.4 Testbed 4...23
6.4.1 QoS Device Tests: Cisco 7200 ..23
6.4.2 QoS Device Tests: NEC IX5010 ...24

6.5 General results ...26

7. Future Work..27

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 4 of 86

8. Conclusions...30

9. References ...31

10. About DiffServ ..32

11. About ALTQ..40

11.1 Introduction ...40

11.2 Provided modules ..40

11.3 Installation and running of ALTQ...41

11.4 Configuration of ALTQ ..43

12. About QoS in Hitachi Routers ...47

12.1 IPv6 Flow control...47

13. About parameters, configurations and examples for QoS tests......................................50

13.1 QoS Device Tests: Cisco 7200 ...50
13.1.1 TestCase 1: Classification based on DiffServ CodePoints....................................52

13.2 QoS Device Tests: NEC IX5010 ...53
13.2.1 TestCase 1: Classification based on DiffServ CodePoints....................................56
13.2.2 TestCase 2: Classification based on IPv6 address...57
13.2.3 TestCase 3: Classification based on protocols and/or port....................................58

13.3 QoS Tests: DiffServ Conformance Tests ...59
13.3.1 Traffic Conditioning (TC) ...62

13.3.1.1 Marking ...62
13.3.1.2 Policing..64
13.3.1.3 Shaping ..69

13.3.2 Per Hop Behaviour (PHB)...72
13.3.2.1 EF and BE..73
13.3.2.2 EF, AF and BE...75

13.3.3 Drop Precedence (DP) ...78

14. About CPU utilization...84

14.1 EDGE..84

14.2 CORE..85

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 5 of 86

Table of Figures
Figure 3-1: Summary of Internet Draft and RFCs related to QoS and IPv6. 13
Figure 5-1: Basic QoS Tests on Packet Marking, Forwarding and Queuing. 18
Figure 5-2: QoS Tests Using DiffServ in the Euro6IX Network. ... 19
Figure 6-1: Basic tests on traffic classification and bandwidth reservation...................... 20
Figure 6-2: Network Testbed used for the DiffServ tests. .. 20
Figure 6-3: Result for testbed 2... 21
Figure 6-4: Mark/clear DSCP values in a DiffServ Edge router.. 21
Figure 6-5: Tests on priority, discard and queue controls in a DiffServ Core router........ 22
Figure 6-6: Main results on testbed 3. .. 23
Figure 6-7: QoS test topology for one device test (Cisco 7200).. 24
Figure 6-8: QoS test topology for one device test (NEC IX5010)... 25
Figure 6-9: Main results on testbed 4. .. 25
Figure 7-1: Euro6IX testbed with one DS domain. .. 28
Figure 7-2: Euro6IX testbed with multiple DS domains.. 29
Figure 10-1: General DiffServ architecture, defined in [RFC2475]. 32
Figure 10-2: How the Traffic Class (TC) byte is used. .. 33
Figure 10-3: EDGE tasks: Marking.. 33
Figure 10-4: EDGE tasks: Policing (drop, remarking). ... 34
Figure 10-5: EDGE tasks: Shaping. .. 34
Figure 10-6: CORE tasks: FIFO Queuing. .. 35
Figure 10-7: CORE tasks: Strict Priority Queuing... 36
Figure 10-8: EDGE tasks: Fair Queuing. .. 36
Figure 10-9: EDGE tasks: Fair Queuing with Bandwidth Reservation.................................. 37
Figure 10-10: CORE tasks: General RED mechanism. ... 38
Figure 10-11: CORE tasks: RED parameters. .. 38
Figure 10-12: CORE tasks: WRED, GRED, etc. parameters. .. 39
Figure 11-1: Discard probability in RIO implementation. ... 41
Figure 11-2: Discard probability in current RIO implementation. ... 46
Figure 13-1: QoS test topology for device test (Scenario 1).. 50
Figure 13-2: QoS test topology for device test (Scenario 2).. 54
Figure 13-3: Snapshot from ATE 2 (TestCase 1)... 57
Figure 13-4: Snapshot from ATE 2 (TestCase 2)... 58
Figure 13-5: Snapshot from ATE 2 (TestCase 3)... 59
Figure 13-6: Testbed used for the DiffServ local tests. .. 60
Figure 13-7: Characteristics of the equipment of the testbed. .. 61
Figure 13-8: Table of classes rates... 78
Figure 13-9: Table of parameters for the first DP test. ... 79
Figure 13-10: Parameters tested for DP evaluation. ... 80
Figure 13-11: Table of parameters for the second DP test. ... 81
Figure 13-12: Table of DP rates... 82
Figure 13-13: Table of DP rates... 83
Figure 14-1: Table of CPU utilization (%) - EDGE.. 84
Figure 14-2: CPU utilization for EDGE tasks. .. 85
Figure 14-3: Table of CPU utilization (%) - CORE. .. 86
Figure 14-4: CPU utilization for CORE tasks. .. 86

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 6 of 86

1. QOS OVER IPV6: INTRODUCTION

The aim of this document is to report the work carried out in Euro6IX about IPv6 and QoS
during the first year.�

1.1 Objective

The Euro6IX WP4 A4.1 tasks relate to IPv6 and QoS include:
• Evaluate the current status of the actual standards and implementations (end systems,

routers) with respect to IPv6 QoS functionality.
• Evaluate actual IPv6 applications which use Flow Labels or DiffServ.
• Investigate the current possibilities for an IPv6 QoS deployment using Flow Labels and

Traffic Classes.
• Investigate the possibilities of IXs to support IPv6 QoS.
• Deploy IPv6 QoS (Flow Labels and Traffic Classes) services in the Euro6IX test-bed.
• Test and evaluate the interconnection of different DiffServ administrative domains.
• Deploy bi-directional services (as far as possible) and investigate the influence of routing

and signaling protocols / routes regarding quality levels.
• Evaluate the conformance of SLAs (Service Level Agreements) for real-time

applications.

1.2 Relevance for IPv6 deployment

Within the proposed objectives, we are special interested in to accomplish:
• Extend know-how in using and implementing IPv6 QoS services.
• Deeper knowledge about the impacts in networks of IPv6 Flow Labels and Traffic

Classes.
• Achieve the QoS expected for each class of service, accomplishing the previously

established SLAs.
• Proper behavior of real-time application such as VoIP, video, etc., using premium

classes.

1.3 Technical Approach

With the rapid growth of the IP based networks, including the Internet, there has been a large
focus on providing necessary network resources to certain applications. That is, it has become
better understood that some applications are more ‘important’ than others, thereby demanding
preferential treatment throughout a network. Additionally, applications have different demands,
such as real-time requirements of low latency and jitter in addition of a high bandwidth.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 7 of 86

Real-time applications often do not work well across the Internet because of variable queuing
delays and congestion losses. The Internet, as originally conceived, offers only a very simple
Quality of Service (QoS), point-to-point Best Effort (BE) data delivery. This basic IP best-effort
mechanism, assumed by default either for IPv4 or IPv6, doesn't provide natively the capability to
differentiate the traffic. So, it was necessary to develop some approaches in order to provide to
both protocols this capability. Before real-time applications such as Voice over IP, remote video,
multimedia conferencing, visualization, and virtual reality can be broadly used, the Internet
infrastructure must be modified to support real-time QoS, which provides some control over end-
to-end packet delays.

One of the most highlighted IPv6 advantage is the build-in QoS functionality, which manage
better the traffic compared to IPv4 Best Effort feature. This enables IP-based real-time and
multimedia applications.

There exists two approaches for QOS based in two different philosophies: reservation oriented
and non-reservation oriented.

The first one perform a reservation before the flows are sent to the network, building a virtual
channel along which the resources are reserved. For this reason a signalling protocol is needed in
order to create this channel. This approach has the advantages that the resources are strictly
guaranteed to the customers. However, it has the disadvantage that the maintenance of the
reservations and the signalling introduces an overhead that in a large scale could be unpractical.
The most know example of that approach is the Integrated Services (IntServ) - using normally a
RSVP signalling.

The second one, the non-reservation oriented, don't establish the virtual channels over the
network and don't make a particular resource reservations. What they typically do is split the
network on edge and core, performing different tasks on each one. On the edge, the packets
analyse to see from and to who the traffic belongs, what the services and application are
involved, and so on. Then, the packets are marked taking into account the treatment they will
need, and along the rest of the network (core) the packets will be treated accordingly. This way,
it solve the problem of the overhead of the maintenance of the information about the particular
flow, avoiding also the signalling, what are advantage. On the other hand, this brings the
problem that this way the resources to the customers can not be strictly guaranteed, what is a
disadvantage. However, with a good dimensioning of the network and the use of brokers in order
to manage the resources, are expected that these problems could be solved. A very know
example of this approach is the Differentiated Services (DiffServ) architecture.

Currently, DiffServ is probably the most viable solution to implement QoS in a scalable way. In
IPv4 environments, DiffServ platforms are more or less well tested. So the goal is to test in the
same way some IPv6 implementations. These conformance tests should comprehend at least the
standard CoS (Classes of Service): EF (Expedited Forwarding), AF (Assured Forwarding) and
BE (Best Effort), appoint to the following parameters:�

• Bandwidth assurance for different CoS.
• Bandwidth distribution for different AF classes and Drop Precedence (DP).
• Delay assurance for premium classes.
• Proper traffic conditioning to avoid starvation on less priority classes.

In a first phase, the conformance tests can be achieved using traffic generation tools, obtaining
detailed information about the behavior of the different flows. In a second phase, the evaluation
can be performed using “real traffic”, through the use of voice, video or other applications
provided by the A4.2 activity.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 8 of 86

For completing the task objectives, IPv6 QoS will be enabled within Consulintel, PTIN, T-Nova
and UPM site networks. In this scenario several tests and investigation will be performed in
order to gather knowledge about the actual status quo of IPv6 Flow Label and Traffic Classes
support. Heterogeneous end systems will be used and also routers from different vendors.�

��

�

1.4 Background

The following terms are widely related with the scope of this document, so their definitions are
essential for understanding it.

QoS (Quality of Service)

The Quality of Service is the collective effect of service performance, which determines the
degree of satisfaction of a user of the service, and is characterized by the combined aspects of
service support performance, service operability performance, service performance, service
security performance and other factors specific to each service. This term is not used to express a
degree of excellence in a comparative sense nor is it used in a quantitative sense for technical
evaluations.

CoS (Class of Service)

CoS is a classification scheme whereby traffic with similar performance requirements are
grouped together for handling by the network, a means of differentiating different types of traffic
and prioritizing them. Each priority level is designed to support specific types of traffic and is
backed by rigorous SLAs based on the associated applications’ data delivery requirements. QoS
attributes may be specified across a number of classes of service.

SLA (Service Level Agreement)

A service contract between a customer and a service provider where it is described what kind of
services should be provided. A customer may be a user organization (source domain) or another
DiffServ domain (upstream domain). The SLAs are offered by a domain (one or more networks
under the same administration), which is responsible for ensuring that adequate resources are
provisioned and/or reserved to support these SLAs. In this context, while for the customers is
mandatory to obtain the contracted resources for a proper working of their applications, in
special the real-time applications, the service provider are obligated to give these resources to
accomplish the contracts established.

IntServ (Integrated Services)

Integrated Services enhances the IP network to support real-time transmissions and guaranteed
bandwidth for specific flows. A flow is a distinguishable stream of related IP packets from a
unique sender to a unique receiver that results from a single user activity and requires the same
QoS. For example, a flow might consist of one video stream between a given host pair. To
establish the video connection in both directions, two flows are necessary. Each application that
initiates data flows can specify which QoS are required for this flow. If the video conferencing
tool needs a minimum bandwidth of 128 kbps and a minimum packet delay of 100 ms to assure a
continuous video display, such a QoS can be reserved for this connection.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 9 of 86

Real-time QoS is not the only issue for a next generation of traffic management in the Internet.
Network operator’s requests the ability to control the sharing of bandwidth on a particular link
among different traffic classes. They want to be able to divide traffic into a few administrative
classes and assign to each a minimum percentage of the link bandwidth under conditions of
overload, while allowing "unused" bandwidth to be available at other times. These classes may
represent different user groups or different protocol families, for example. Such a management
facility is commonly called controlled link sharing. Since the term integrated services (IS), as
state in [RFC 1633], for an Internet service model that includes best-effort service, real-time
service, and controlled link sharing, the IS model includes two sorts of service targeted towards
real-time traffic:

• Guaranteed service. A service characterized by a perfectly reliable upper bound on delay.
This is the appropriate service model for intolerant playback applications.

• Predictive service. Supplies a fairly reliable, but not perfectly reliable, delay bound not
based on worst-case assumptions on the behavior of other flows. Instead, this bound
might be computed with properly conservative predictions about the behaviour of other
flows.

RSVP (Resource Reservation Setup Protocol)

RSVP is an IETF Internet standard [RFC 2205] protocol for allowing an application to
dynamically reserve network bandwidth. RSVP enables applications to request a specific QoS
for a data flow. RSVP can be use with IPv6 Flow Label for QoS services.

Hosts and routers use RSVP to deliver QoS requests to the routers along the paths of the data
stream and to maintain router and host state to provide the requested service, usually bandwidth
and latency. RSVP uses a mean data rate, the largest amount of data that the router will keep in
queue, and minimum QoS to determine bandwidth reservation.

DiffServ (Differentiated Services)

The DiffServ architecture is proposed by the IETF on the DiffServ Working Group. In 1998, two
RFCs appears defining the DiffServ architecture [2475], and its application to the IP packets,
IPv4 and IPv6 [RFC2474]. DiffServ enhancements to the Internet protocol are intended to enable
scalable service discrimination in the Internet without the need for per-flow state and signaling at
every hop, and as a result, do not consume per-flow state within the routing infrastructure. A
variety of services may be built from a small, well-defined set of building blocks, which are
deployed in network nodes. The services may be either end-to-end or intra-domain; they include
both those that can satisfy quantitative performance requirements (e.g., peak bandwidth) and
those based on relative performance (e.g., "class" differentiation). Services can be constructed by
a combination of:

• Setting bits in an IP header field at network boundaries (autonomous system boundaries,
internal administrative boundaries, or hosts).

• Using those bits to determine how the nodes inside the network forward packets.

• Conditioning the marked packets at network boundaries in accordance with the
requirements or rules of each service.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 10 of 86

A DiffServ-compliant network includes a classifier that selects packets based on the value of the
DS field [RFC 2474], along with buffer management and packet scheduling mechanisms capable
of delivering the specific packet forwarding treatment indicated by the DS field value. Setting of
the DS field and conditioning of the temporal behavior of marked packets need only be
performed at network boundaries and may vary in complexity. Unlike Integrated Services, QoS
guarantees made with Differentiated Services are static and stay long-term in routers. This means
that applications using DS do not need to set up QoS reservations for specific data packets. All
traffic that passes DS-capable networks can receive a specific QoS. The data packets must be
marked with the DS field that is interpreted by the routers in the network.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 11 of 86

2. QOS SUPPORT IN IPV6

IPv6 was designed with extended QoS support. In its header [RFC2460] has two QoS-related
fields:

2.1 8-bits Traffic Class Field

This field could be use by originating nodes and/or forwarding routers to identify and distinguish
between different classes or priorities of IPv6 packets, which will receive a particular forwarding
treatment at each network node. This Traffic Class is geared to DiffServ.

2.2 20-bits Flow Label Field

This field may be used by a source to label sequences of packets for which it requests special
handling by the IPv6 routers, such as non-default QoS or "real-time" service. This tool of IPv6 is
still experimental and subject to change as the requirements for flow support in the Internet
become clearer. Nevertheless IETF is working right now in its standardization.

Hosts or routers that do not support the functions of the Flow Label field are required to set the
field to zero when originating a packet, pass the field on unchanged when forwarding a packet,
and ignore the field when receiving a packet. This Flow label is geared to IntServ, but may have
other uses.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 12 of 86

3. IPV6 QOS ROADMAP IN THE IETF

An early set of opinions and suggestions about Flow Label handling for IPv6 was stated in
[RFC1809]. A current intended semantics and usage of the Flow Label field is in [RFC2460,
Appendix A]. Finally, there are some proposals on IPv6 Flow Label specification in some IETF
Internet Drafts, so this is a work in progress. See Figure 3-1.

In the other hand, there are a number of experiments in progress in the use of the IPv4 Type of
Service and/or Precedence bits to provide various forms of DiffServ for IP packets. And the idea
is to allow similar functionality in IPv6 through Traffic Class field in the IPv6 header. The IETF
Differentiated Services (DiffServ) Working Group has standardized a common layout for a six-
bit field of both octets, called DS field. [RFC 2474] and [RFC 2475] define the architecture and
the general use of bits within the DS field, in IPv4, it defines the layout of the TOS octet; in
IPv6, the Traffic Class octet. In the Figure 3-1 is gathered information about several Internet
Drafts (i.e. work in progress too) and RFCs related to QoS with IPv6.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 13 of 86

Name and Date Title Abstract

draft-choi-ipv6-signaling-
interworking-00.txt

October 2002

Signaling
Interworking for
IPv6 Network

In this draft, we describe the features and
requirements of QoS signaling in IPv6 network to
explain the needs of end-to-end QoS signaling. We
discuss the signaling interworking between IPv6
network and other network. The delivering methods of
signaling messages in IPv6 network are also
presented in Appendix.

draft-ietf-ipv6-flow-label-
03.txt

September 2002

IPv6 Flow Label
Specification

This document specifies the usage of the IPv6 Flow
Label field, the requirements for IPv6 source nodes
labeling flows, and the requirements for flow state
establishment methods. The usage of the Flow Label
field enables efficient IPv6 flow classification based
only on IPv6 main header fields in fixed positions.

draft-banerjee-flowlabel-
ipv6-qos-03.txt

April 2002

A Modified
Specification for
use of the IPv6
Flow Label for
providing An
efficient Quality
of Service using
hybrid approach

This memo suggests a pragmatic specification for
defining the 20-bit Flow Label field using a hybrid
approach that includes options to provide IntServ as
well as DiffServ based support for IPv6 Quality of
Service. It also compares various suggested
approaches for defining the 20-bit Flow Label field in
IPv6 Base Header based on RFC 2460 (December
1998) and few other drafts. Addressing the IPv6-
Multicast-QoS issues also becomes possible as a
consequence. This draft clearly specifies exactly
when and how various options are to be used; and in
case of the MFC, exactly how a specific action might
be taken by the suggested implementation. Thus the
resultant mechanism is fully implementable and
unambiguous as even the lower-level details have
been worked out as may be required for actual
implementations. The draft also has a pointer to an
experimental QoS scheme called MultServ.

draft-ietf-mobileip-qos-
requirements-03.txt

July 2002

Requirements of
a QoS Solution
for Mobile IP

Mobile IP ensures correct routing of packets to mobile
node as the mobile node changes its point of
attachment to the Internet. However, it is also
required to provide proper QoS forwarding treatment
to mobile node's packet stream at the intermediate
nodes in the network, so that QoS-sensitive IP
services can be supported over Mobile IP. This
document describes requirements for an IP QoS
mechanism for its satisfactory operation with Mobile
IP.

RFC2460

December 1998

Internet Protocol,
Version 6 (IPv6)
Specification

This document specifies version 6 of the Internet
Protocol (IPv6), also sometimes referred to as IP Next
Generation or IPng. Includes an intended semantics
and usage of the Flow Label field.

RFC2474

December 1998

Definition of the
Differentiated
Services Field
(DS Field) in the
IPv4 and IPv6
Headers

This document defines the IP header field, called the
DS (for differentiated services) field. In IPv4, it defines
the layout of the TOS octet; in IPv6, the Traffic Class
octet. In addition, a base set of packet forwarding
treatments, or per-hop behaviors, is defined.

Figure 3-1: Summary of Internet Draft and RFCs related to QoS and IPv6.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 14 of 86

4. IPV6 QOS SOLUTIONS TO ANALYSE

In this section information about several available IPv6 QoS tools for both open-source and
commercial solutions is summarized. The information has been obtained from developer/vendor
sources. We will work in test scenarios that validate the different implementations.

���������������� Open-Source Solutions����

4.1.1 BSD and KAME

The KAME project was started in 1998 to provide a stable IPv6 stack and software, usable by
the *BSD family of Operating Systems (although it has been widely used in many other
systems). In fact, it is included in the standard FreeBSD distribution, so if using a new version of
FreeBSD, there is no need to install anything outside the distribution itself.

Most of the QoS work performed by FreeBSD is done in the ALTQ (Alternate Queuing)
software. Currently, there is not a stable RSVP daemon available for the KAME stack (the ISI-
RSVP daemon is unusable, because of the non-standard API used by the INRIA project), so only
DiffServ will be feasible using this approach.

ALTQ implementation provides queuing features and other QoS related components required to
manage QoS. The ALTQ release runs over BSD UNIX and integrates a system framework (that
provides an abstraction of QoS components and interfaces QoS components into operating
system), QoS components (realizes actual service differentiation mechanisms), and management
tools (include altq daemon and altqstat monitoring tool). ALTQ works only on outgoing
interfaces because of it controls only outgoing traffic with its queuing disciplines.�

ALTQ release 3.1 (2002/02/28) includes:
• Alternate queuing support for FreeBSD-4.5, NetBSD-1.5.2 and OpenBSD-3.0.
• CBQ (Class-Based Queuing), HFSC (Hierarchical Fair Service Curve), RED (Random

Early Detection Queue Management), RIO (RED with In/Out), WFQ (Weighted Fair
Queuing), and PRIQ (Priority Queuing) implementations.

• RSVP stubs for CBQ/HFSC.
• DiffServ model support.
• ECN (Explicit Congestion Notification) RFC3168 support.
• Packet marking by ALTQ.
• ECN support in TCP.
• Fragment/tunnel handling in IPv4/IPv6.

ALTQ is integrated into KAME IPv6 project and being developed under the KAME CVS
repository.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 15 of 86

4.1.2 BSD and INRIA

The INRIA group of the French National Institute for Research in Computer Science and Control
developed an IPv6 stack and software for the FreeBSD Operating System, including the RSVP
daemon from ISI-RSVP to manage the RSVP protocol, and ALTQ to perform the traffic control.
Most of this software is very INRIA-specific, because of the non-standard API provided by the
INRIA stack. Since both an RSVP daemon and a traffic control software are provided, both
IntServ and DiffServ are usable with this software. Unfortunately, the INRIA project was over
on 1999, so the code is unsupported and only work on old versions of FreeBSD (2.2.6 at most),
making it difficult to be used for a stable solution.

4.1.3 Linux

Linux distribution (2.4.18+ Kernel and USAGI Project) supports IPv6 with QoS through of Flow
Labels and Traffic Classes. This can be controlled using "tc" (contained in package "iproute").
Our goal is to investigate more about its features.

4.1.4 Zebra

Zebra is capable of configure and use DiffServ. Zebra implements two PHB (per-hop forwarding
behaviors): the EF (Expedited Forwarding) and AF (Assured Forwarding).

The AF PHB can be configured to have any number of classes and any number of drop
precedence’s within each class. This is different from the standard, which recommends that there
be four AF Classes and three drop precedence’s within each class. This feature is provided so
that the local networks can provide more AF classes and drop precedence’s, should the need
arise.

4.1.5 Multi-Threaded Routing Toolkit

Multi-Threaded Routing Toolkit or MRTd is an open source software package provides a Unix
and Microsoft Windows routing daemon with support for most IPv4 and IPv6 unicast/multicast
routing protocols. The MRTd routing daemon supports RIPNG, RIP2, and BGP, OSPF, PIM-
DM and DVMRP, as well as emerging/experimental QOS protocols.

4.2 Commercial Solutions

4.2.1 6WIND

The 6WIND devices support QoS features that comply with [RFC 2475] and implements EF and
AF PHBs. So 6WIND QoS software relies on DiffServ and the following mechanisms can be
applied for both IPv6 and IPv4 protocols.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 16 of 86

• Resource guarantee for time sensitive flows.
• Classification policing and shaping scheduling.
• EF and AF IETF DiffServ standard classes. When EF packets enter a DiffServ router,

they are meant to be handled in short queues and quickly serviced to maintain lower
latency, packet loss, and jitter. AF allows variable priority but still ensures that packets
arrive in the proper order, is assured forwarding.

4.2.2 Ericsson Telebit

Ericsson Telebit A/S has developed an IPv6 router that implements RSVP for both IPv4 and
IPv6protocols. Using IPv6 Flow Label the routers can provide QoS to delay sensitive
applications.

4.2.3 Hitachi

Hitachi GR2000 Gigabit Router Series support several IPv6 QoS features. The following QoS
functions are provided based on per IP flow:

• DiffServ.
• Outgoing Priority control (8 levels).
• Bandwidth control (shaper function).
• Discard control (4 classes).
• USC (Usage Parameter Control).����

4.2.4 NEC

The NEC IX5000 Series features dual-stack support for IPv4/IPv6 overlay networks and full
support for multicast, bi-directional digital communication services.

Hardware-based packet processing and powerful QoS engines ensure high-performance IP
switching capabilities with flow-based QoS control. DiffServ/IP precedence, IntServ/RSVP, fair
queuing and MPLS are all supported.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 17 of 86

5. DESIGNED TEST PLAN

5.1 DiffServ

Because of DiffServ is probably the most viable solution to implement QoS in a scalable way,
we will work in this architecture in our first tests and deployment efforts.

5.1.1 Technical Analysis of DiffServ

For a extend technical description of DiffServ see the chapter “About DiffServ” in this
document.

5.1.2 Implementations of DiffServ

There are many DiffServ implementations available in the time being, either public or
commercials ones. See chapter 4 of this document. Although the changes between IPv6 version
to the IPv4 are very small, there are still many implementations without IPv6 DiffServ support.

From the public DiffServ implementations available, ALTQ running on BSD platforms has good
support for IPv6. Other very known implementation for Linux TC (Traffic Control) is not
supporting up to now the IPv6 protocol. There are also some DiffServ commercial
implementations available such as 6WIND, Cisco or Hitachi.

Implementations like ALTQ are also very different than the commercial in the way that the
configuration is made. For example the ALTQ use a nesting mechanism is order to create
hierarchically a sequence of functionalities. When the packets crosses these trees of
functionalities the final behavior achieved is the sum of all the functionalities they have crossed.
This gives to such kind of configuration a big flexibility, however, this make that even the easier
policies are complex to be implemented. On the other hand the commercial implementation are
configured based on the very known Common Line Interface (CLI). Although they don't provide
the same flexibility, the configuration is easier.

In this document we describe several test-beds with FreeBSD, Cisco, Hitachi and NEC
implementations so as to test and evaluate the DiffServ on IPv6 networks. These platforms are
very known IPv6 implementations and strategically very important from the ISPs point of view.

5.2 QoS on FreeBSD

FreeBSD (and actually the whole *BSD Operating Systems family) has always been
acknowledged to be a very good research field for new communication protocols. As stated
before the KAME and INRIA projects support IPv6 support, and they provide a solution for QoS
on FreeBSD.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 18 of 86

Given the fact that the INRIA project is over, we have decided not to trust on it, and choose
KAME and ALTQ to deploy our research DiffServ testbed. FreeBSD 4.3 or higher will be used.
The installation of such Operating System is out of the scope of this document, but more
information can be found at http://www.freebsd.org. In the other hand you can see some
description on characteristics, installation and configuration of ALTQ in the chapter “About
ALTQ” of this document.

5.3 QoS on Hitachi routers

Hitachi commercial solution for IPv6 QoS has five main control mechanisms.
• QoS enable/disable
• Transmission control. Three queue modes: priority, round-robin, and bandwidth).
• Queue control. Packets in the queue are transmitted or discarded depending on priority.
• Flow control. identifies incoming IP packets, determines priority, rewrites TOS/DSCP,

and manages bandwidths.
• TOS-QoS conversion table for priority determination.

You can see more details in these mechanisms in “About QoS in Hitachi Routers” chapter in this
document.

In our first tests we used “Flow control” mechanism so as to carry out QoS task on detect input
IP frames for which flow control is desired, priority decision on the detected flows, TOS/DSCP
rewriting, and flow control parameters to instruct the contract band surveillance.

5.4 General Test Scenarios

In the first semester we defined two general test scenarios for our first IPv6 QoS tests. The first
one includes tests with Linux and FreeBSD boxes, generating IPv6 packets with a particular
DiffServ value in their Traffic Class field. Then a QoS enabled router forward and queue the
packet according their Traffic Class value, See Figure 5-1. This scenario is suitable for local
tests.

Router

Linux

FreeBSD

Linux

FreeBSD

IPv6

DiffServ

Packets

IPv6

DiffServ

Packets

Forwarding,

and Queuing

Policies

Figure 5-1: Basic QoS Tests on Packet Marking, Forwarding and Queuing.

For completing the task objectives on IPv6 QoS, the second scenario includes DiffServ test
among some partners using Euro6IX Backbone infrastructure. We will define the specific
partners, and after the set-up and configuration of the test-beds we will collect data in order to
report quantitative result of delay, jitter, packet loss and packet amount. See Figure 5-2.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 19 of 86

LAN

Euro6IX

LAN

Linux

FreeBSD

DiffServ

LAN

Linux

FreeBSD

Linux

FreeBSD

Figure 5-2: QoS Tests Using DiffServ in the Euro6IX Network.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 20 of 86

6. REALIZED TESTS AND RESULTS

During second semester some partners realized internal local tests according the first general test
scenario stated before. Here are the description and results of four of these tests.

6.1 Testbed 1

This test allows to evaluate the basic behavior of traffic classification and bandwidth reservation
provided by DiffServ. The bottleneck is in the output interface, where only 10Mbps are
available. If the interfering traffic is high enough, it will make the main one to suffer congestion
(losses, delay); a QoS solution will avoid it. See Figure 6-1.

10 Mbps

10 Mbps

100 Mbps

Main traffic

Interfering traffic

Figure 6-1: Basic tests on traffic classification and bandwidth reservation.

Some result of this tests: The KAME IPv6 stack and ALTQ has been found to be the best Open-
Source solution for a DiffServ deployment. The ALTQ software has been studied, staring over
the actual implementation, to be deployed in a multi-partner testbed. A real testbed is being
designed and deployed, to measure the real impact and performance of a QoS-enabled router in
the performance of the network.

6.2 Testbed 2

This test aims to evaluate several IPv6 DiffServ functionalities in Cisco routers used as DiffServ
Edge and Core routers. Figure 6-2 shown the testbed used. The functionalities tested include
marking of DSCP, evaluation of dropping policies, shaping traffic and Per Hop Behavior (PHB).

Figure 6-2: Network Testbed used for the DiffServ tests.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 21 of 86

Figure 6-3 shown the main results obtained for testbed 2.

Test Purpose

Results

(Note *)

Marking of DSCP Verify that the packets are marked correctly,
depending of their characteristics (IPv6
address, protocols, port, etc.)

Correct marking on
all tested scenarios

Policing Verify that the marked packets are policed
(dropped and/or re-marked) correctly when it
is necessary

Correct
performance

Shaping

(TBF)

Verify the traffic shaping Correct
performance

Per Hop Behavior
(PHB)

Verify that behaviour of the EF, AF and BE
traffic are correct accordingly to the PHB
definition

Correct
performance

Drop Precedence
(DP)

Verify the Drop Precedence behaviour on
the DiffServ Domains as described on the
AF PHB RFC

Correct
performance

Figure 6-3: Result for testbed 2.

Note *: The detail information about environments, global settings, initial test set-up and
complete results for this testbed in the chapter “About parameters, configurations and examples
for QoS tests” in this document.

6.3 Testbed 3

This tests aim to evaluate several IPv6 DiffServ functionalities in Hitachi routers used as Edge
and Core routers of a DiffServ architecture. The functionalities tested include mark/clear DSCP
values in a Edge router, Figure 6-4; and evaluation of priority, discard and queue controls in a
Core router, .Others tests with bandwidth ratios are underway.

Figure 6-4: Mark/clear DSCP values in a DiffServ Edge router.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 22 of 86

Figure 6-5: Tests on priority, discard and queue controls in a DiffServ Core router.

We found that Linux boxes can generate ICMP pings with configurable Traffic Class and Flow
Label values. We used this function on Traffic Class field in some test on priority and discard
controls. In addition we used this characteristic on Flow Label for some rough test, in this case
we hadn’t a device (router, host or application) that was able to manage the Flow Label marked
packets. We will search more information about this.

Figure 6-6 shown the main results obtained for testbed 3.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 23 of 86

Test Purpose Results

Marking of DSCP Verify that the packets are marked/cleared
correctly, depending of their characteristics
(IPv6 address, protocols, port, IPv6 DSCP
value, etc.)

Correct
marking/clearing on
all tested scenarios

Priority Selection Verify that the packets run through the right
priority depending on the classification.

Correct

Quantitative results
are underway

Discard Policies Verify that the DSCP marked packets are
discard correctly when it is necessary

Unfinished Results

Quantitative results
are underway

Queue Selection Verify that the packets run through the right
queues depending on the classification.

Unfinished Results

Scheduling for
IPv6:

Verify if the configured bandwidth ratios are
met at the output interface.

Correct qualitative
performance

Quantitative
performance is
underway

Access Lists Verify if they work for IPv6 correctly

(This function is related to Hitachi’s flow
Control, See “About QoS in Hitachi Routers”
chapter in this document)

Correct

Mapping of v4/v6
DSCP

Verify the mapping of DSCP from IPv4 to
IPv6 and vice versa.

Results are
underway

Flow Label Verify that the Flow Label marked packets
are managed correctly

Some rough test

 Verify the counter statistics Results are
underway

Figure 6-6: Main results on testbed 3.

6.4 Testbed 4

These tests aim to evaluate several IPv6 DiffServ functionalities in Cisco 7200 and NEC IX5010
devices. In this time the tests are conducted as device test only, because of

• simplicity of the measurements
• to obtain reference test results
• to establish test configurations that could be meet in a later phase by other test

participants.

6.4.1 QoS Device Tests: Cisco 7200

Here, the goal is to test basic classification functionality of the DUT based on DSCP (comparing
to IETF RFC 2574, RFC 2575).

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 24 of 86

The configuration of device IPv6 classification tests shows the Device Under Test (DUT 1) and
the test equipment Abstract Test Equipment (ATE 1). The tests in this scenario are done locally
as device tests only. DUT 1 is the active IPv6 Showcase CPE in Darmstadt. The measurement
device is connected with the local DUT at its site. Figure 6-7 shows the test configuration. The
control of the test activities could be done per human interface or special management network,
not shown in the figure.

ATE 1

DUT 1

I/F: POS 2/0
3FFE:C00:0:2:210:BFF:FEA2:9800

I/F: POS 1/0

IPv6 addr:
3FFE:C00:0:1:210:BFF:FEA2:9800

Figure 6-7: QoS test topology for one device test (Cisco 7200).

As result we found that:
• The packets are classified correctly depending on the DSCP
• The action for the classified packets e.g. rate-limiting is done correctly

So we can conclude that the classification and the rate limiting was done correctly for this test.
There are more information about environments, global settings, initial test set-up and complete
results for this test in the chapter “About parameters, configurations and examples for QoS tests”
in this document.

6.4.2 QoS Device Tests: NEC IX5010

Here, the goal is to test basic classification functionality of the DUT based on:
• TestCase 1: DSCP
• TestCase 2: IPv6 address
• TestCase 3: protocol and/or port number

The configuration for these IPv6 classification tests shows in Figure 6-8 the Device Under Test
(DUT 1) and the test equipment Abstract Test Equipment (ATE 1 and ATE 2). DUT 1 is an test
IPv6 Showcase CPE in Darmstadt (NEC IX). The tests in this scenario are done locally as device
tests only. In a next step the tests could be done in a larger network with other test participants.
The control of the test activities could be done per human interface or special management
network, not shown in Figure 6-8.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 25 of 86

ATE 1 DUT 1

I/F: vlan 6

I/F: ppp1

ATE 2

Figure 6-8: QoS test topology for one device test (NEC IX5010).

Figure 6-9 shown the main results obtained for testbed 4.

Test Purpose Results

TestCase 1: DSCP Verify that the packets are classified
correctly, depending of their DSCP value

The packets have
been classified
correctly

TestCase 2: IPv6
address

Verify that the packets are classified
correctly, depending of their IPv6 address

The packets have
been classified
correctly

TestCase 3:
protocol and/or port
number

Verify that the packets are classified
correctly, depending of their protocol and/or
port

The packets have
been classified
correctly

Figure 6-9: Main results on testbed 4.

So we can conclude that the classification and the rate limiting was done correctly for these test.
There are more information about environments, global settings, initial test set-up and complete
results for these tests in the chapter “About parameters, configurations and examples for QoS
tests” in this document.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 26 of 86

6.5 General results

Then we can resume our latest result as follow:
• Currently we have studied several QoS related terms, in special about DiffServ, and the

current status of standardization of IPv6 Traffic Class and Flow Label fields.
• We have analyzed public information about some available IPv6 QoS tools for both

open-source and commercial solutions.
• We have identified how the DiffServ architecture can provide QoS on IPv6 networks.

The different parts of the DiffServ architecture, the EDGE and the CORE elements, were
analysed, enhancing the main functionalities, as well as the main algorithms typically
used. Additionally, since our tests, we demonstrated that using the DiffServ architecture
it is posible to provide QoS end-to-end.

• The tests performed were separated in two parts: EDGE and CORE. For the EDGE the
typical functionalities like marking, policing or shaping were tested with a correct
behaviours. For the CORE, functionalities like the PHB and DPs, has been tested also
successfully, working everything as expected.

• The tests performed on this work, are just conformance tests to assess the DiffServ model
working and to test the capabilities in order to provide differentiated services to the final
customers. The same tests will be performed using other designs and platforms to
evaluate and compare the correctness of all functionalities. This way, will be easy to
know what are the best deployment for a particular functionality and what the best to do
another one.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 27 of 86

7. FUTURE WORK

The IPv6 QoS sub-activity will be continued along the next semesters in order to keep on the
overall development of our tasks. We will focus on:

• Continue with the preliminary studies that have been started in the first year.
• Continue the investigation of the actual possibilities for an IPv6 QoS deployment using

Flow Labels and Traffic Classes.
• Evaluate actual IPv6 applications, which use Flow Labels or DiffServ.
• Investigate the possibilities of IXs that support IPv6 QoS.
• Deploy IPv6 QoS services in the Euro6IX network.
• Deploy bi-directional services (as far as possible) and investigate the influence of routing

and signaling protocols / routes regarding quality levels.
• Evaluate the conformance of SLAs for real-time applications.
• Participate in internal and external trial that validate our QoS test scenarios and

implementation on Euro6IX.

Furthermore, there are two important areas of study that Euro6IX is interested:
• Other uses of the Flow Label field, which may be useful for aggregated flows.
• Possible additional header types, using the “Next Header” construction of IPv6.

For completing our objectives, we will enable a more complete testbed involving in a first step
the site networks of T-Nova, PTIN, Consulintel so as to measure the real impact and
performance of a QoS-enabled router in the usage of a network. A traffic generator tool will be
used, to isolate the problems. Later, a model of traffic from a real videoconferencing application
(Isabel) will be used, to estimate the impact of such technology on the numeric performance of
the application.

In a second step, several site networks in addition of Euro6IX backbone will participate in a
testbed with one DS domain. We will try this architecture because is easier to setup and follow
than a multi-domain architecture. See Figure 7-1.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 28 of 86

Figure 7-1: Euro6IX testbed with one DS domain.

In a third step, and because of DiffServ model assumes that every hop along a path gives to all
the packets a coherent treatment, then a common treatment of the traffic for every service
provides has a huge importance and is mandatory to achieve the expected results. So, this test
should focus the inter-ISPs DiffServ policies, as well as the outgoing and incoming traffic
between them. Also, another important issue is the evaluation about the achieved end-to-end
QoS, what use to be called Per Domain Behavior (PDB). The topology of the Euro6IX network
is a very good testbed to development an interesting study on this area, using the IXs to provide
QoS services. So, in the next months will be possible to perform a good work on this area. In this
way we will test a multi-domain architecture within Euro6IX network. See Figure 7-2. We will
discuss the proper design and boundaries during the next semester.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 29 of 86

Figure 7-2: Euro6IX testbed with multiple DS domains.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 30 of 86

8. CONCLUSIONS

From the local tests performed until now, we can say that:
• Currently we have studied several QoS related terms, in special about DiffServ, and the

current status of standardization of IPv6 Traffic Class and Flow Label fields.
• We have analyzed public information about some available IPv6 QoS tools for both

open-source and commercial solutions.
• The tests performed on this work, are just conformance tests to assess the DiffServ model

working and to test the capabilities in order to provide differentiated services. The same
tests will be performed using other designs and platforms to evaluate and compare the
correctness of all functionalities so as to know what are the best deployment for a
particular functionality and what the best to do another one.

The IPv6 QoS sub-activity will be continued along the next semesters in order to keep on the
overall development of our tasks. We will deploy a more complete testbed involving one DS
domain and then a multi DS domain architecture. Because of the characteristics of the Euro6IX
network, it is a very good testbed to development an interesting study on this area, using the IXs
to provide QoS services.

In the other hand, and because the standardization status of Traffic Class and Flow Label is
underway and needs improve, there are few implementations and applications that explode IPv6
QoS. This is a wealth area in which Euro6IX can develop innovative research and development
tasks producing implementations, test-beds, test suites and so on. As stated before our main goals
are:

• Extended know-how in using and implementing IPv6 QoS services in large scale.
• Deeper knowledge about the impacts of IPv6 Flow Labels and Traffic Classes.
• Achieve the QoS expected for each class of service, accomplishing the previously

established SLAs.
• Proper behavior of real-time application such as Voice over IP, video, etc., using

premium classes.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 31 of 86

9. REFERENCES

[RFC1809] C. Partridge, “Using the Flow Label Field in IPv6”, IETF RFC 1809, June 1995.

[RFC2460] S. Deering, and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", IETF
RFC2460, December 1998.

[RFC2474] K. Nichols, S. Blake, F. Baker, D. Black et al., “Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers”, IETF RFC2474, December 1998.

[RFC2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “ An Architecture for
Differentiated Services” IETF RFC 2475, December, 1998.

[RFC2597] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, “Assured Forwarding PHB Group”, IETF
RFC 2597, June 1999.

[RFC2598] V. Jacobson, K. Nichols, K. Poduri; “An Expedited Forwarding PHB”, IETF RFC 2598,
June, 1999.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 32 of 86

10. ABOUT DIFFSERV

The DiffServ architecture appears in some way in order to solve a scalability problems of the
IntServ architecture previously defined, in order to be suitable to be used on large networks. For
that reason, since the beginning the main characteristic of DiffServ was to avoid the huge
overhead of signaling and particular reservations maintenance (state information). To achieve
that, different flows with the same network requirements are aggregated on the same class in
order to be treated together. Using a limited number classes, is possible tom give to all flows the
resources they need and, at the same time the network nodes don't need to save information
about how to treat all flows, but just how to treat the packets belonging to each class. These
classes containing flows with the same requirements are called Class of Service, and shortly
represented as CoS.

In order to implement the aggregation of the flows in CoSs, is necessary to define a complete
architecture, to define when, who, and how the packets are aggregated, and when, who and how
the packets are treated in order to achieve the expected behavior. In [RFC2475] this architecture
was clearly defined and the tasks divided in 2 parts as the Figure 10-1 shows: the CORE and the
EDGE.

Figure 10-1: General DiffServ architecture, defined in [RFC2475].

The EDGE part, located on the edge of the backbones, is responsible to analyze the particular
flows. Basically what must be done is to know what flow is, taking into account the source and
destination networks, the protocol used at the application level (normally just using the
destination TCP/UDP ports), among others. Then, identify what treatment in needed for this
particular flow and, mark the packet as belonging to one specific CoS (as specified in
[RFC2474]). The IPv6 packets are marked on 1 byte-size field called Traffic Class (TC), as well
as the IPv4 is on the Type of Service field (ToS). Within this field, just the 6 most significant bits
are used to define the CoS, what means that just could be defined 26; i.e. 64 different CoS.
Although this number could sounds not too big, it is considered unanimously enough for this
purpose. This field is known as the DSCP, short of DiffServ Code Point. The two least
significant bits are considered by the DiffServ RFC as Currently Unused (CU) bits, although
they should be kept as they are, because they can also be used to implement the ECN (Explicit
Congestion Notification) mechanism. The Figure 10-2 shows how the Traffic Class (TC) byte is
used.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 33 of 86

Figure 10-2: How the Traffic Class (TC) byte is used.

The task of marking the CoS code on the DSCP field can also be called as a signaling, because is
using this mechanisms that the rest of the network will be signaled about the CoS for what the
packet belong, the same way as the IntServ architecture use the RSVP.

In the former case (DiffServ) the information goes within the packet and, for this reason, we say
that is used inbound signaling, while in the former case (IntServ) is needed an external protocol
(e.g. RSVP), and, for that reason, we say that is used out-of bound signaling.

Besides the analysis of the flows and marking of the packet accordingly, the edge routers should
also make some others tasks in order to insure that the contracts between the ISP and the
customers can be accomplished. The fact that one customer send more traffic than expected must
not be noticed by the other customer, mainly the one that are within the values contracted. Thus,
the edge routers must perform besides the marking, also the policing and shaping. All these task
are also called Traffic Conditioning (TC).

As referred above, the marking is task that sets the CoS codes, regarding the packet
characteristics. The Figure 10-3 shows schematically this task.

Figure 10-3: EDGE tasks: Marking.

The purpose of the policing task is to check if the customers are accomplishing the contracts
with the ISP; i.e. to check if the customer is sending too much traffic or not.

Typically exist two measures that can be taken when a customer exceed the amount contracted
with the ISP. The first one is the drop of the exceeded packets, admitting just the traffic in order
to fit what was agreed. The other is the remarking. The remarking consist in mark the exceeded
packets as a different CoS, with less requirements than the initial one. The Figure 10-4 shows
schematically this behavior.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 34 of 86

Figure 10-4: EDGE tasks: Policing (drop, remarking).

The shaping is used the same way as the policing to limit and drop the exceeded packets, but in
this case another issue is also done. An Token Bucket (TB) or Leaky Bucket (LB) are typically
used in order to allow the support of bursts, and providing also the capacity of introduce a
constant inter-packet times and reducing the jitters. This is important to adequate the speed of the
transmission between different links and also to provide to a best behavior for the applications
with real-time requirements. The Figure 10-5 shows the schematically this behavior.

Figure 10-5: EDGE tasks: Shaping.

Typically, the situation where the edge functionalities are performed on the edge router, is on the
access routers; i.e. PoPs of the Service Providers. However, as the Figure 10-1 shows, the edge
functionalities should also be performed on the link to other DiffServ Domains, in order to
conditionate the incoming and the outgoing traffic. The conditioning of this traffic should be
based not on the particular flows but at a higher level, like CoS codes or network prefixes.

The CORE part is the main responsible to give the treatment that the packets need, in order
achieves the desired overall behavior. The main characteristic of this part is that it is not aware of
the information about the particular flows, looking just to the DSCP field, and implementing
mechanisms in order to provide expected behavior. That is the key for the good scalability of this
solution.

The core routers can treat the packets of different way, giving to them different priorities,
different guaranteed bandwidth, different maximum delays, and so on. The treatment that the
packets receive by core router, which is according to the CoS that they belong, is knows as Per
Hop Behavior (PHB). The overall behavior that the customer notices will be the sum of all the
PHB experimented along the path. This is the reason why is very important to have a coherent
policy within the backbones and inter-backbones.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 35 of 86

Thus, a very important issue is a common view of what treatment should be given to one flow,
and also how to treat each CoS. Taking into account that there a set of typical behavior that the
customer will need, some PHBs and respective CoS codes have been normalized over the years.
The [RFC2598] and [RFC2597], describes the Expedited Forward (EF) and the Assured
Forwards (AF), as well as defined the by default PHB, the Best Effort (BE). Other PHBs are
very common to be referred such as premium, gold, silver and others, which are similar to the
ones defined on the RFCs.

The EF is a PHB defined to be used for real-time requirements. Basically, it should provide a
low delay, low jitter and low loss, independently of the amount of traffic of the rest of the
classes. The CoS to be used should be the 10 1110 (0x2E in hexadecimal).

The AF is a PHB that can be split on 12 different behaviors. The AF was planned to define 4
kind of assured services (classes), when the customer has always a minimum bandwidth
available, but the total amount depends on the current degree of bottleneck on the network. The 4
classes differ between them on the amount of the minimum bandwidth available. Within each AF
class, 3 levels of Drop Precedence (DP) were defined. For the same AF classes the packets are
considered of different levels of DP depending on the congestion. In the same class, a packet
with a higher level of DP has more probability to be dropped. Each time the packet crosses a
congestion node and is not dropped the DP should be increased. The codes defined for each of
the 12 combinations is the following:

Classe 1 Classe 2 Classe 3 Classe 4
Low Drop Precedence `001010´ `010010´ `011010´ `100010´
Medium Drop Precedence `001100´ `010100´ `011100´ `100100´
High Drop Precedence `001110´ `010110´ `011110´ `100110´

The first 3 bits indicates the class, the next 2 the DP and the last one is always 0.

The BE class is the class by default and the packet don't have any guarantee. The BE packets are
just forwarded if no other most priority packets are ready to be sent. In order to consider all the
packets coming from a non-DiffServ networks as a BE, the code attributed to that PHB is the 00
0000 (0x00).

The Queuing mechanisms are the responsible to implement the different sort of PHBs defined
above, performing different scheduling strategies. Also, other mechanisms of Congestion
Avoidance can be applied in order to achieve some kind of behaviors.

There are many mechanisms of Queuing (or Scheduling), but they can be generally considered in
4 basic strategies: FIFO, Strict Priority, Fair Queuing and Fair Queuing with Reservations.

The FIFO (First In First Out) mechanism is the most basic one. The order of the outgoing
packets is the same as the ongoing packet; i.e. the firs packet to arrive is the first packet to be
sent. This mechanism cannot be used to implement prioritization, however, is very good to make
buffering and is also a good piece to built most complex mechanisms. The Figure 10-6 shows
how the FIFO works.

Figure 10-6: CORE tasks: FIFO Queuing.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 36 of 86

The Strict Priority defines N classes of priority, where each class is basically one FIFO Queuing.
The strategy consists of make that all the packets from the most priority class are sent firstly. The
packets from the second most priority class are sent just if there are no packets from the most
priority class, and so one for every class till the least priority class. Every time a packet is sent
from any class, the process of looking for the next packet to be sent is initiated, trying first the
most priority classes. The Figure 10-7 shows how this strategy works.

Figure 10-7: CORE tasks: Strict Priority Queuing.

With this mechanism it is possible to implement different priorities yet. But the problem is that it
is a scheme not much fair. We cannot implement complex behavior because only possible to
establish one relation: strict priority. On the other hand, this mechanism is very suitable to
provoke starvation to the least priority classes. This means that the packets (belonging to one
CoS) that comes to this class, in times when exists congestion on the higher priority traffic, no
one packets will be forward.

The Fair Queuing solves the starvation problem and also gives more flexibility to build different
PHBs. As well as the Strict Priority mechanism, the Fair Queuing uses N classes. But in this
case, to each class are not assigned priorities, but percentage/amount of traffic. I.e. for each class
is specified for example a percentage that can be used of the total available. This way, if we have
3 classes, one with 10%, other with 30% and other with 60%, in a link with 10Mbit/s; the first
class will get 1Mbit/s, the second 3Mbit/s and the third 6Mbit/s. So, either we can specify a
percentage of the total bandwidth or we can define the concrete value we want.

This mechanism works based on the Round Robin (RR) mechanism. This mechanism consists on
looking for packets on every class in a cycling way, sending an amount of packets (if available)
taking into account the weight defined for each class. The Figure 10-8 shows how this
mechanism works.

Figure 10-8: EDGE tasks: Fair Queuing.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 37 of 86

Finally, to the Fair Queuing mechanism can be added some complexity in order to allow to
insure bandwidth reservation. This is very important in order to implement the AF PHBs,
because is mandatory to guarantee some amount of bandwidth. In a simplistic way this
mechanism is implemented with two RR, to distribute the bandwidth reserved by the classes with
reservation and the other to distribute the rest of the traffic for every other, including the ones
that have reservations. The Figure 10-9 shows the Fair Queuing with Bandwidth Reservation
mechanism.

Figure 10-9: EDGE tasks: Fair Queuing with Bandwidth Reservation.

The RR of the reservation classes is very simple because the reservation represents the weigh
needed and the sum of them the total amount. For the other RR must be specifies by weighs, how
the distribution should be made.

One important thing to be noted on these queuing mechanisms is that it seems that just solves the
problem of prioritization. However, the delay problem is very close to the prioritization and
amount of bandwidth problem. On the other hand, the dimensioning of the buffers (of the
classes) should be used to limit the maximum delay, to increase or decrease the loss, or to
support better or worse short periods of congestion (bursts). Related to the jitter, many
implementations also allow to include a TB mechanism as in the EDGE, in order to make
constant the inter-packet times.

These mechanisms are to be used at the same time with the Queuing, and intents to avoid that the
congestion happens. The main and almost the only one Congestion Avoidance mechanism used
is the RED (Random Early Detection). The algorithm was presented the first time by Sally Floyd
and Van Jacobson.

The philosophy behind this algorithm is to every time what is the level of occupation of the
Queues. Then, when a queue start to get too much size, the packets starts be dropped, being the
drop probabilities much bigger as much size the queue has.

This algorithm has its major advantages dealing with traffic that detects and reacts to the
congestion, as for example TCP. When the congestion grows and the queues has a determined
size some packets starts to be dropped, depending on the state if the queue. At this time, the TCP
packets detect that some packet are being loosed and reduces the rate. This way, the congestion
is smartly controlled. On the other hand, if the simple mechanism are working; i.e. if the packets
are dropped suddenly, when the queue is filled (what is called Tail Drop), all the traffic will start,
at the same time, loosing packets, retransmitting packets, and so on. The congestion will then
become chaotic. This effect is called a Global Synchronization or Total Synchronization. The
Figure 10-10 shows schematically what the RED mechanism does.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 38 of 86

Figure 10-10: CORE tasks: General RED mechanism.

The RED mechanism works based on 3 parameters: the Minimum Threshold (Min), the
Maximum Threshold (Max) and the DP on the Maximum Threshold point (DPMax). The Figure
10-11 shows the means of each one.

These parameters define a line in the graphic that for every queue size determines what is the
probability that a packet has to be dropped. This way, in short periods of time the queue size is
evaluated, the probability applied accordingly to each packet. The following expression (1)
describes mathematically the DP value for a given queue size S.

Figure 10-11: CORE tasks: RED parameters.

for S >= 0.
0 if S =< Min
(1) [DPMax * (S - Min)] / (Max - Min) if Min < S < Max
1 if S >= Max

Other Congestion Avoidance mechanisms based on RED algorithm arisen is several
implementations, in order to accomplish the AF PHB requirements. In the AF PHB definition,
each AF class must implement 3 levels of DPs. These strategies have different names like,
GRED (Generalised RED), WRED (Weighted RED) or RIO (RED with In and Out), among
others.

Basically all these mechanisms define N different REDs, dimensioning the parameters of each
one accordingly to what the behaviour they want. The Figure 10-12 shows schematically how
they work. As can be seen, for a point X, given constant queue size, the probability of a packet
be dropped depends on from which DP the packet belongs.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 39 of 86

Figure 10-12: CORE tasks: WRED, GRED, etc. parameters.

This is the overall of the DiffServ architecture. For that reason is very important to understand
that every component on the DiffServ deployment in important for the correct overall work.
Aspect like a correct traffic conditioning, a previously good dimensioning, etc. are very
important issues to take into account.

There are also some entities that should be used over a DiffServ platform, in order to control
and/or manage mainly the EDGE part, in order maintain the coherence of the edge routers, and
to update the dynamic information related to the customers' reservation and requirements. There
is not a very concrete definition of what this entity should be, neither the name it show have, but
names like Bandwidth Brokers (BB), Policy Servers (PS) or Quality of Service Brokers (QoSB),
are the used up to now.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 40 of 86

11. ABOUT ALTQ

11.1 Introduction

ALTQ, Alternate Queuing (http://www.csl.sony.co.jp/person/~kjc/kjc/programs.html), is a piece
of software designed for the *BSD Operating Systems family with the intention of creating a
versatile user-space QoS toolset. It is stable enough to be used in a production system, but
versatile enough to be used to test new scheduling and queuing mechanism in the QoS
subsystem.

It includes a small part of the software in kernel space, but most of it is user-space based,
allowing researchers to try new techniques without needing to be an expert on the BSD kernel. It
is based in the concept of modules, which perform the tasks needed for the Classifier, Meter,
Marker, Shaper and Dropper, as defined in the DiffServ Node model. Such modules can be
coded and loaded by the user, creating the flexibility needed for such researchers.

At the same time, it includes in the standard distribution a lot of modules to implement all the
needed parts of the system and most of the best known to work queuing policies, datagram
forwarders, traffic shapers,... so it is usable in production systems (and testbeds) without the need
to develop such modules. We are not interested in developing such modules, so we will follow
this approach to use the QoS tool.

11.2 Provided modules

Some of the most important modules provided by the ALTQ distribution are:

• FIFOQ: implements a First In First Out queue. It is used as reference implementation for
other queues, since it is what the forwarding mechanism in the kernel does when ALTQ
is not enabled.

• PRIQ: implements a very simple priority based queue: the datagram with a higher
priority is always sent first (up to 16 priorities are settable).

• Blue: a queue implementation to reduce datagram loss in TCP connections due to
congestion. From the Blue web server (http://www.thefengs.com/wuchang/blue/): “[...] a
fundamentally different queue management algorithm which can effectively eliminate
packet loss in congested TCP/IP networks. The results show that one can reduce packet
loss considerably by decoupling congestion management algorithms from either the
instantaneous or average queue length”.

• JoBS: Joint Buffer management and Scheduling is at the same time a scheduling
algorithm and a buffer manager, providing hop by hop relative and absolute service
guaranty to the aggregated traffics.

• WFQ: Weighted Fair Queuing provides a portion of the bandwidth related to a weight
given to each flow. The actual implementation is closer to Stochastic Fairness Queuing,
using a hash table to match each given flow with a queue.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 41 of 86

• RED: Random Early Detection notifies congestion to the sender discarding datagrams
when the queue is not actually still full.

• ECN: Explicit Congestion Notification is an extension to RED where the sender is
explicitly signaled about the congestion.

• RIO: RED with In and Out is a way to determine what datagrams can be discarded using
RED. The Figure 11-1 shows the probability for a given datagram to be discarded, given
it is tagged as In or Out, for a given queue size. The implementation in ALTQ actually
uses three levels, one for each drop probability in the AFij (fixed i) PHB.

Figure 11-1: Discard probability in RIO implementation.

• HFSC: Hierarchical Fair Service Curve is a shared-link technique used to separate the
bandwidth usage from the delay. More information can be found at http://www-
2.cs.cmu.edu/~hzhang/HFSC/main.html.

• CBQ: Class Based Queuing, by far the best-tested technique, is based in a hierarchical
tree of classes. Each class is assigned with a bandwidth (but unused bandwidth can be
used by child classes) and a queue. An extra priority property can control when a queue is
served, to control relative delay between classes, and a Weighted Round Robin algorithm
is used for classes with the same priority.

• Traffic filter: a given datagram is said to match a filter if all the requested fields (source
and destination address and port, protocol, security parameter index (related to IPsec)
flow label and traffic class) match. It is used to send the datagram to a given class or a
conditioner.

• Traffic conditioner: for a matching datagram, a specific action is taken: drop, pass, set
DSCP field, etc.

11.3 Installation and running of ALTQ

If ALTQ is not included in the FreeBSD kernel, it must be patched with the latest ALTQ release.
The compilation of a FreeBSD kernel is out of the scope of this document, so we will only
mention here the options needed to be set in the kernel configuration file, as specified in the Tips
file of the ALTQ distribution:

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 42 of 86

When you use CBQ (especially on FastEthernet), it is recommended
to use a fine-grained kernel timer, (since CBQ needs the timer to
shape the traffic). The following option changes the timer from
100Hz to 1KHz.

options HZ=1000

The kernel configuration options of ALTQ has dependencies.

ALTQ: always required

options for CBQ
ALTQ_CBQ: required
ALTQ_RED: to use RED on CBQ classes
ALTQ_RIO: to use RIO on CBQ classes

options for HFSC
ALTQ_HFSC: required
ALTQ_RED: to use RED on HFSC classes
ALTQ_RIO: to use RIO on HFSC classes

options for PRIQ
ALTQ_PRIQ: required
ALTQ_RED: to use RED on PRIQ classes
ALTQ_RIO: to use RIO on PRIQ classes

options for RED
ALTQ_RED: required
ALTQ_FLOWVALVE: red penalty-box

options for RIO
ALTQ_RIO: required

options for CDNR
ALTQ_CDNR: required

options for BLUE
ALTQ_BLUE: required

options for WFQ
ALTQ_WFQ: required

options for FIFOQ
ALTQ_FIFOQ: required

options for JoBS
ALTQ_JOBS: required

options for AFMAP
ALTQ_AFMAP: this is an undocumented feature
(used to map an IP flow to an ATM VC)

options for LOCALQ (a placeholder for any local use)
ALTQ_LOCALQ: required

options to support IPSEC in IPv4 (IPSEC is always supported in
IPv6)
ALTQ_IPSEC:

to disable use of processor cycle counter
ALTQ_NOPCC:
HFSC, CDNR, and token-bucket regulators use the
processor cycle counter (Pentium TSC on i386 and PCC
on alpha) for measuring time.
but it should be disabled in the following cases:
- 386/486 (non-pentium) CPUs don't have TSC
- in SMP, per-CPU counters are not in sync
- Power Management might affect processor cycle counter
- architecture other than i386 and alpha

for debugging ALTQ (verbose and extra checking)
ALTQ_DEBUG:

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 43 of 86

Using the ALTQ daemon is pretty easy when already configured. It is launched using:

altq [-f <file>] [-d] [-D] [-v]

-f <file>: the configuration file. If not set, /etc/altq.conf is used.
-d: sets command mode (see below): the daemon does not detach and a command prompt is
displayed.
-v: prints debugging information (implies –d).
-D: dummy mode: no actual system call is made.

When –d is used, the command prompt is displayed, allowing the use of one command of:
help: shows the command list and syntax.
quit: stops altqd and exits.
altq reload: reload the configuration file and restart the daemon.
altq <ifname> [enable|disable]: enables or disables altq in the given interface.

11.4 Configuration of ALTQ

ALTQ reads the entire configuration from a file. Because of the way the parsing of the file is
done, lines are actually applied bottom-up, in case of relationship not defined (it can be explicitly
defined).

Given the high amount of modules provided by ALTQ, we will only describe those that will be
used in our testbed:

Interface command

interface <if_name> [bandwidth <bps>] [tbrsize <bytes]
[<sched_type>] [<discipline-specific-options>]

<if_name>: name of the interface in FreeBSD notation (i.e.: ed0).

<bps>: bandwidth of the interface.

<bytes>: size of the bucket in the tocken-bucket algorithm used in the interface. If omitted, a
heuristic algorithm is used to guess it.

<sched_type>: cbq, blue, fifoq, hfsc, priq, wfq,... In can be omitted only if the
interface is only provided with traffic conditioners (that is: no output polity to apply). Otherway,
at least fifoq must be used to mean the standard routing process.

<discipline-especific-options>: depending on the selected queuing policy, the
parameters can be different.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 44 of 86

filter command

filter6 <if_name> <class_name> [name <filter_name>] [ruleno
<num>] <dst_addr>[/<prefix_len>] <dport>
<src_addr>[/<prefix_len>] <sport> <proto> [flowlabel <fl>]
[tclass <tc>] [tclassmask <tcm>] [gpi <g>]

<if_name>: name of the interface in FreeBSD notation (i.e.: ed0).

<class_name>: the name of the class or the conditioner where the matching datagram will be
sent to.

<filter_name>: an optional name for this filter.

<num>: the explicit order of the filter to be applied (higher first), defaults to 0.

<dst_addr>[/<prefix_len>] <dport> <src_addr>[/<prefix_len>]
<sport>: source and destination address and port. 0 matches everything.

<proto>: the proto number in the IPv6 header.

<fl>, <tc>, <tcm>: flowlabel and traffic class (and mask) in the IPv6 header.

<g>: Security Parameter Index value (IPsec).

conditioner command

conditioner <if_name> <cdnr_name> <action>

<if_name>: name of the interface in FreeBSD notation (i.e.: ed0).

<cdnr_name>: name of the conditioner.

<action>: a list of one or more of:

pass: do not touch anything in the datagram.

drop: discard the datagram

mark <value>: set the DSCP field in the header of the datagram

tbmeter <rate> <depth> <in_action> <out_action>: token-bucket
implementation with <rate> in bps and <depth> in KB. The actions are performed when
inside and outside the token-bucket profile.

trtcm <cmtd_rate> <cmtd_depth> <peak_rate> <peak_depth>
<green_action> <yellow_action> <red_action>
[coloraware|colorblind]: it is a two-rates three-colors marker, implemented
with two token-buckets. <green_action> is performed if inside the first bucket,
<yellow_action> if inside the second one, and <red_action> otherwise.
coloraware prevents the conditioner to raise the color (the value of the DSCP field);
colorblind is the default if omitted.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 45 of 86

class command

It is used for queue policies involving class management (CBQ, HFSC, PRIQ).

class <sched_type> <if_name> <class_name> <parent_name>
[red|rio] [ecn] [cleardscp] [discipline-specific-options]

<sched_type>: type of queuing policy. Must match the one for the interface.

<if_name>: the name of the interface.

<class_name>: a name for the class, unique for a given interface.

<parent_name>: the name of the previously defined parent class of this class. NULL for
PRIQ, where there is not hierarchy, or for the root class.

red: use RED in this class

rio: use RIO in this class

ecn: use ECN (implies RED) in this class. It is still in experimental development stage.

cleardscp: removes de DSCP code in the IP header.

For CBQ, the only policy we are using, [discipline-specific-options] is:

[admission cntload|none] [priority <pri>] [pbandwidth <percent>]
[exactbandwidth <bps>] [borrow] [default] [control] [maxburst
<Mcount>] [minburst <mcount>] [maxdelay <msec>] [packetsize
<ps>] [maxpacketsize <mps>]

cntload: controled load service for RSVP. Must be none otherwise.

<pri>: form 0 to 7 (the higher the better), controls the priority of this queue. Defaults to 1.

<percent>, <bps>: percent of the bandwidth of the interface, and absolute number,
assigned to the class (absolute number is discouraged by the developers).

borrow: if the class gets overlimited, can borrow bandwidth from the parent class if possible.

default: if set, this is the default class; datagrams not matching any filter will be assigned to
this default class.

control: if set, this is the control class (for ICMP, RSVP, IGMP,...). By default, the control
class is predefined with 5% of the bandwidth.

<Mcount>, <mcount>: maximum burst size (default 16) and secure burst size (default 2)
allowed to this class.

<msec>: maximum queue size for this class, in miliseconds. The default is set to allow 30
datagrams.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 46 of 86

<ps>, <mps>: mean and maximum packet sizes in the class. <mps> defaults to the MTU of
the interface.

rio command

If RIO is used in a class, the rio command must be used to set its parameters:

rio <low_min_th> <low_max_th> <low_inv_pmax> <med_min_th>
<med_max_th> <med_inv_pmax> <high_min_th> <high_max_th>
<high_inv_pmax>

The RIO implementation actually uses three drop probabilities, instead of the two shown in the
Figure 11-1, so each value maps to a meaning in the next Figure 11-2.

Figure 11-2: Discard probability in current RIO implementation.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 47 of 86

12. ABOUT QOS IN HITACHI ROUTERS

This commercial solution for IPv6 QoS has the following main control mechanisms.

1. QoS enable/disable: QoS information (command: qos) specifies whether QoS is functional or
nonfunctional.

2. Transmission control: determines the output queue mode, thereby controlling the precedence
of packets on the interface output queue. There are three queue modes: priority, round-robin, and
bandwidth. The QoS queue attribute command (qos-queue-list) generates interface output queue
lists; the QoS interface command (qos-interface) applies the queue list for each interface.

3. Queue control: when there is a backlog on the output queue, packets remaining on the queue
are transmitted or discarded depending on priority. The QoS discard mode command (qos-
discard-mode) sets queue size and enables queuing by priority class.

4. Flow control: identifies incoming IP packets by their flow-control settings, determines
priority, rewrites TOS/DSCP, and manages reserved bandwidths. The flow control includes two
input form for configuration definition, you can choose either qos-ip commands (qos-ip-list, qos-
ip-list-group, qos-ip) or flow commands (flow, filter).

5. TOS-QoS conversion table for priority determination: this table determines the priority of
incoming IP packets detected by flow control using either the packets’ TOS values or rewritten
TOS values. The TOS-QoS conversion table (qos-tos-map) command determines priority for
each TOS field precedence.

For our first tests we exploded the functionalities of “Flow control” mechanisms, son here are
several important issues and examples for this kind of control:

12.1 IPv6 Flow control

The IPv6 flow control has a filter function and QoS function (ROUTE-OS6 Ver. 06-01 or later).
This group of commands include for IPv6 QoS function,: the flow detecting condition
parameters to detect input IP frames for which flow control is desired, priority decision on the
detected flows, TOS/DSCP rewriting, and flow control parameters to instruct the contract band
surveillance.

Setting

Setting and changing the global information by each input/output interface.

• [set] flow qos <Interface Name> {in | out} [-disable]

Setting and changing the flow information.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 48 of 86

• [set] flow qos <Interface Name> {in | out} [-disable] list <List No.>
• [-action
• [{-upc <kbps> [-upc_burst <Byte>]}] Specifies the contract band by kbps.
• | {[-max_rate <kbps> [-max_rate_burst <Byte>]] Specifies the maximum contract band

restriction by kbps.
• [-min_rate <kbps> [-min_rate_burst <Byte>]]}] Specifies the minimum band assurance

by kbps.
• [-index <No.>] Specifies the connection branching index number (index specified in the

DLCI group information or the Vc-Group information).
• [{ [-priority <No.>][-discard <No.>][{-penalty_drop | -penalty_discard <No.>}] }]

Makes the flow control function effective by specifying the output priority and queuing
priority.

• | { -replace_dscp <DSCP_Value> [{-penalty_drop | -penalty_dscp <DSCP_Value>}] }
This parameter enables the function that rewrites a DSCP value and that determines the
output priority and queuing priority using the rewritten DSCP value.

• | { -dscp_map [{-penalty_drop | -penalty_dscp <DSCP_Value>}] }]] This parameter
enables the function that determines the output priority and queuing priority using the
DSCP value of an input packet.

• [{-penalty_drop | -penalty_discard <No.> | -penalty_dscp <DSCP_Value>}]
• Specifies the operation when the contract band is breached.

• [Normal packet flow detecting condition] and [Important packet flow detecting

condition]

1. When the high order protocol is other than TCP, UDP, and IGMPv6.

{ip | <protocol No.>} <IPv6_Source> <IPv6_Destination> [dscp <DSCP_Value>]
[{upper| lower} <Length>]

2. When the high order protocol is TCP, UDP.

{tcp| udp} <IPv6_Source> [<port_source>] <IPv6_Destination>
[<port_destination>] [dscp <DSCP_Value>] [{upper| lower} <Length>]

3. When the high order protocol is ICMPv6.

icmp6 <IP_Source> <IP_Destination> [<ICMPv6_Type> [<ICMPv6_Code>]] [dscp
<DSCP_Value>] [{upper| lower} <Length>]

Examples

0. Start flow service

config: flow yes

1. Classification of packets

In order to preferentially transfer the packets with the transmitter IPv6 addresses of
3ffe::501:811:ff01:1::1, the high-order protocol of TCP, and with the destination port number of
23 (telnet), the output priority class of the said packets are specified as seven and that of other
packets as one.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 49 of 86

config: flow qos interfaceX out list 40001 tcp 3ffe:501:811:ff01:1::1 any 23 action priority 7
config: flow qos interfaceX out list 60000 ip any any action priority 1

2. Specification of contract band

Specify that the traffic from the end users can be monitored by using ISP, and the packets
reaching the contract band will be aborted. Specify so that the packet whose transmitter IPv6
address in the input interface name of interfaceX is 3ffe:501:811:ff01:1::1 can be monitored by
the contract band 128 kbps.

config: flow qos interfaceX in list 40001 ip 3ffe:501:811:ff01:1::1 any action upc 128

3. Specification of queuing priority when contract band is reached

Specifies that packets reaching the contract band be discarded more easily when the output lines
are congested. Monitors the packets with the interface name of interfaceX and the transmitter
address of 3ffe::501:811:ff01:1::1 in the contract band of 5,000 kbps and changes the queuing
priority to one at reach.

config: flow qos interfaceX in list 40001 ip 3ffe:501:811:ff01:1::1 any action upc 5000
penalty_discard 1

4. DSCP value rewriting

Rewrites the DSCP value of the ip packets with the transmitter IPv6 address of
3ffe::501:811:ff01:1::1 to 34 and those with 3ffe::501:811:ff02:1::1 to 10.

config: flow qos interfaceX in list 40001 ip 3ffe:501:811:ff01:1::1 any action replace_dscp 34
config: flow qos interfaceX in list 40002 ip 3ffe:501:811:ff02:1::1 any action replace_dscp 10

This parameter enables the function that rewrites a DSCP value and that could helps on
determinate the output priority and queue priority in the next devices of the network.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 50 of 86

13. ABOUT PARAMETERS, CONFIGURATIONS AND EXAMPLES FOR
QOS TESTS

Here we registered several information on parameters and examples for IPv6 QoS DiffServ test.

13.1 QoS Device Tests: Cisco 7200

• Test Group ID: Euro6IX-QoS-Classification – Device Test
• Version: 0-3, 2002-12-06
• Test purposes: TestCase 1 : Classification based on DiffServ CodePoint
• Reference: RFC 2474, RFC 2475, RFC 2597

Configuration

The configuration of device IPv6 classification tests shows the Device Under Test (DUT 1) and
the test equipment Abstract Test Equipment (ATE 1). The tests in this scenario are done locally
as device tests only. DUT 1 is the active IPv6 Showcase CPE in Darmstadt, that is connected to
the IPv6 Showcase backbone via the ViperNET and as a backup solution via the GWIN. The
Darmstadt CPE is the entrance point for eight further IPv6 Showcase participants.

In the first phase the tests are conducted as device test only, because of
• simplicity of the measurements
• to obtain reference test results
• to establish test configurations that could be meet in a later phase by other test

participants.

ATE 1

DUT 1

I/F: POS 2/0
3FFE:C00:0:2:210:BFF:FEA2:9800

I/F: POS 1/0

IPv6 addr:
3FFE:C00:0:1:210:BFF:FEA2:9800

Figure 13-1: QoS test topology for device test (Scenario 1).

The Abstract Test Equipment respectively the measurement device is connected with the local
DUT at its site. Figure 13-1 shows the test configuration. The control of the test activities could
be done per human interface or special management network, not shown in the figure.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 51 of 86

Environments
• ATE 1 : Agilent Routertester
• DUT 1 : Cisco 7200, OS-Version: c7200-p-mz.tanabata-II

Global Settings
• Layer ½: POS 1/0; PPP; Clock: DUT internal, others recovered
• Layer 3: IPv6
• Measurement Device Settings:PPP; Packet size 512 bytes for premium class (cs6); Packet

size 64 bytes for best effort (dscp=0)

These values are not changed during the test !

Initial Test set-up:

For these set of functional tests use the following configuration as starting point for each test
case!

Overview of the configuration steps and test procedure:
• Configure the network as shown in test topology.
• Configure the interfaces as shown in the test topology.
• Check IP connectivity of measurement devices between ATE 1 - DUT 1

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 52 of 86

DUT 1 configuration:

class-map match-all IPv6-Premium
 match dscp cs6 cs7
class-map match-all IPv6-BE
 match dscp default
!
!
policy-map IPv6-limit
 class IPv6-BE
 police cir 5000000 bc 2500 be 2000
 conform-action set-dscp-transmit af11
 exceed-action drop
 class IPv6-Premium
 set dscp af43
!
!
!
interface POS1/0
 description IPv6 QoS, Link to RT,
 no ip address
 encapsulation ppp
 no ip mroute-cache
 ipv6 address 3FFE:C00:0:1:210:BFF:FEA2:9800/64
 ipv6 address FE80::210:BFF:FEA2:9800 link-local
 ipv6 enable
 ipv6 cef
 service-policy input IPv6-limit
 tag-switching ip
 crc 32
 pos scramble-atm
 pos flag c2 22
!
interface POS2/0
 description IPv6 QoS, Link to RT
 no ip address
 encapsulation ppp
 no ip mroute-cache
 ipv6 address 3FFE:C00:0:2:210:BFF:FEA2:9800/64
 ipv6 address FE80::210:BFF:FEA2:9900 link-local
 ipv6 enable
 ipv6 cef
 tag-switching ip
 crc 32
 pos scramble-atm
 pos flag c2 22
!

13.1.1 TestCase 1: Classification based on DiffServ CodePoints

Purpose

To test basic classification functionality of the DUT, compare to IETF RFC 2574, RFC 2575.

Description

Traffic is send from ATE 1 to ATE 1 via DUT 1 and vice versa.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 53 of 86

Verify that DUT 1 (ingress) classifies the packet correctly and send the packets through the right
output interface and treats the packets correctly corresponding to the configured action e.g. using
the right queue, rate-limiting etc..

Test Setup

DUT 1 denotes the ingress and egress router of the network.

Configure DUT 1 according to classification actions to be tested:
• rate-limiting: 5000000bps for best effort traffic (dscp=0)
• classification: cs6 is set to af43
• classification: best effort (dscp=0) is set to af11

Configure ATE 1 to send (PPP) Traffic to ATE 1 vice versa (device test, one test equipment
sufficient, because the test is local).

Log the results (…)

Expected Results

The packets are classified correctly depending on the DSCP

The action for the classified packets e.g. rate-limiting is done correctly

Results

The classification and the rate limiting was done correctly

Overall measurement results

T-Nova has snapshots with detail results. Those images are not here because they have low
resolution when they are pasted in this document.

13.2 QoS Device Tests: NEC IX5010

• Test Group ID: Euro6IX-QoS-Classification – Device Test
• Version: 0.1, 2002-12-06
• Test purposes: TestCase 1 : Classification based on DiffServ CodePoint

TestCase 2 : Classification based on IPv6 address
TestCase 3 : Classification based on protocol and/or port number

• Reference: RFC 2474, RFC 2475, RFC 2597

Configuration

The configuration of IPv6 classification tests shows the Device Under Test (DUT 1) and the test
equipment Abstract Test Equipment (ATE 1 and ATE 2).

DUT 1 is an test IPv6 Showcase CPE in Darmstadt (NEC IX).

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 54 of 86

The tests in this scenario are done locally as device tests only. DUT 1 is also connected to the
active IPv6 Showcase CPE in Darmstadt, that is connected to the IPv6 Showcase backbone via
the ViperNET and as a backup solution via the GWIN. The Darmstadt CPE is the entrance point
for eight further IPv6 Showcase participants. So in a next step the tests could be done in a larger
network with other test participants

The control of the test activities could be done per human interface or special management
network, not shown in Figure 13-2.

ATE 1 DUT 1

I/F: vlan 6

I/F: ppp1

ATE 2

Figure 13-2: QoS test topology for device test (Scenario 2).

Environments
• ATE 1 : Agilent Routertester
• ATE 2 : Windows 2000 PC with Ethereal installed
• DUT 1 : NEC IX5010, OS-Version APL :7.2.10 BSP : 5.2.01

Global Settings
• Layer ½. PPP; Clock: DUT internal, others recovered
• Layer 3: IPv6
• Measurement Device Settings: PPP; Packet size 512 byte

These values are not changed during the test!

Initial Test set-up

For these set of functional tests use the following configuration as starting point for each test
case!

Overview of the configuration steps and test procedure:
• Configure the network as shown in test topology.
• Configure the interfaces as shown in the test topology.
• Check IP connectivity of measurement devices between ATE 1 - DUT 1, DUT 1 – ATE 2

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 55 of 86

DUT 1 configuration:

system name IX5010

card register 1 ipswm-4s
ipsw-iu register 1 100MTX8
ipsw-iu register 2 POSC-155SM
ipsw-iu register 3 ATMC-155SM
ipsw-iu register 4 GBEC-LX
port administer 1 up

ethernet port 16 hdx10

pos-port register 21 1 - sonet

vlan-mode change
vlan register 1 default_vlan 13,14,15,17,18
vlan register 6 6IX 16
vlan register 11 smb2000-14 11
vlan register 12 smb2000-15 12
vlan register 41 IPv6_QoS 41
vlan-mode active

ip address-table vlan 6 10.0.6.2 255.255.255.192 dix
ip address-table ppp 1 198.18.32.1 255.255.255.0 none

ipv6 interface enable vlan 6
ipv6 interface status vlan 6 up
ipv6 interface enable ppp 1
ipv6 interface status ppp 1 up
ipv6 address-table vlan 6 2001:7a0:200:10:: 64 auto
ipv6 address-table ppp 1 2001:7a0:200:101::1 64 unicast

ipv6 routing-table 2001:7a0:207:: 48 fe80::203:e4ff:fe85:3072@vlan_6

ipv6 ripng register vlan 6 disable enable

qos mode enable

qos bandwidth register vlan 6 afbe 10000
qos bandwidth register ppp 1 afbe 155000

qos mac-bandwidth register ether 16 afbe 10000

qos traffic-class-trust type vlan 6 dscp 1
qos traffic-class-trust type ppp 1 dscp 1

qos traffic-class-mark type vlan 6 dscp 1
qos traffic-class-mark type ppp 1 dscp 1

classify-list register 1 1 ipv6
classify-list protocol-id 1 1 tcp
classify-list register 2 1 ipv6
classify-list protocol-id 2 1 tcp
classify-list register 3 10 ipv6
classify-list ip-sa 3 10 2001:7a0:200:101:0:4cff:fef4:36f8
classify-list register 4 10 ipv6
classify-list qos-class 4 10 af12
classify-list register 5 10 ipv6

qos profile register 1 afbe

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 56 of 86

qos profile comment 1 ipv6-premium
qos profile peak-rate 1 1000 1100
qos profile qos-class 1 af43
qos profile register 2 afbe
qos profile comment 2 ipv-limit
qos profile peak-rate 2 500 550
qos profile qos-class 2 af11
qos profile remark-class 2 af43
qos profile register 3 afbe
qos profile qos-class 3 af21
qos profile register 4 afbe
qos profile qos-class 4 af41
qos profile register 5 afbe
qos profile qos-class 5 be
qos profile register 6 afbe

policy-list register 1 1 1 1
policy-list register 1 2 3 3
policy-list register 1 3 4 4
policy-list register 1 4 5 5

policy-map register ppp 1 in 10 1

ppp ipcp-config 1 up

ppp ipv6cp-config 1 up

card administer 1 up

13.2.1 TestCase 1: Classification based on DiffServ CodePoints

Purpose

To test basic classification functionality of the DUTs, compare to IETF RFC 2574, RFC2575.

Description

Traffic is send from ATE 1 to ATE 2 via DUT 1.

Verify that DUT 1 classify the packets correctly and send the packets through the right output
interfaces and treat the packets correctly corresponding to the configured action.

Test Setup

Interface ppp1 denotes the ingress interface whereas vlan6 denotes the egress interface of DUT1

Configure DUT 1 according classification actions to be tested:
• Packets with the dscp value af12 have to be classified to af41

Configure ATE 1 to send (PPP) Traffic to ATE 2 with dscp value af12

Start the Capture at ATE2 to verify that the packets have been classified correctly.

Expected Results

The packets are classified correctly depending on the DSCP.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 57 of 86

Results

The packets have been classified correctly.

Snapshot from ATE 2

The RouterTester is sending Traffic with af12 (0x30) the Router is setting the dscp to af41
(0x88):

Figure 13-3: Snapshot from ATE 2 (TestCase 1).

13.2.2 TestCase 2: Classification based on IPv6 address

Purpose

To test basic classification functionality of the DUT.

Description

Traffic is send from ATE 1 to ATE 2 via DUT 1.

Verify that DUT 1 classifies the packets correctly depending on the IPv6 address and send the
packets through the right output interfaces and treat the packets correctly corresponding to the
configured action.

Test Setup

Interface ppp1 denotes the ingress interface whereas vlan6 denotes the egress interface of DUT1

Configure DUT 1 according classification actions to be tested:
• Packets with the Source IPv6-Address 2001:7a0:200:101:0:4cff:fef4:36f8 have to be

classified to af21

Configure ATE 1 to send (PPP) Traffic to ATE 2 with the Source IPv6-Address
2001:7a0:200:101:0:4cff:fef4:36f8

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 58 of 86

Start the Ethereal Capture at ATE2 to verify that the packets have been classified correctly.

Expected Results

The packets are classified correctly depending on the IPv6 address.

Results

The packets have been classified correctly.

Snapshot from ATE 2

IPv6-address 2001:7a0:200:101:0:4cff:fef4:36f8 is set to af21 (0x48) by the router:

Figure 13-4: Snapshot from ATE 2 (TestCase 2).

13.2.3 TestCase 3: Classification based on protocols and/or port

Purpose

To test basic classification functionality of the DUT.

Description

Traffic is send from ATE 1 to ATE 2 via DUT 1, DUT 2, DUT 3 and vice versa.

Verify that DUT 1 classifies the packets correctly depending on protocol and / or port number
and send the packets through the right output interfaces and treat the packets correctly
corresponding to the configured action.

Test Setup

Interface ppp1 denotes the ingress interface whereas vlan6 denotes the egress interface of DUT1.

Configure DUT 1 according classification actions to be tested:

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 59 of 86

• Packets with the protocol have to be classified to af43

Configure ATE 1 to send (PPP) Traffic to ATE 2 with the protocol TCP (ID=6) set.

Start the Capture at ATE2 to verify that the packets have been classified correctly.

Expected Results

The packets are classified correctly depending on the protocol or port number.

Results

The packets have been classified correctly.

Snapshot from ATE 2

The RouterTester is sending TCP-Traffic (dscp=0), the router is setting all TCP-Traffic to af43
(0x98):

Figure 13-5: Snapshot from ATE 2 (TestCase 3).

13.3 QoS Tests: DiffServ Conformance Tests

This section presents the topology, procedures and results of several DiffServ Conformance
tests.

Topology

The Figure 13-6 shows graphically the testbed used.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 60 of 86

Figure 13-6: Testbed used for the DiffServ local tests.

In these tests, two PCs were used in order to simulate the end-to-end behaviour noticed by the
final customers. To simplify the study, on the tests the traffic will only flow from the left to the
right, as indicated by the arrow. Then, the left hand PC will always act as a sender, while the
right hand PC will always act as receiver.

The DiffServ Domain consists on 3 Cisco routers: a Cisco 3640, a Cisco 3620 and a Cisco 2500.
In all scenarios presented later, the Cisco 3640 will always act as an EDGE router and the Cisco
3620 as a CORE router. The router Cisco 2500 is not DiffServ-aware and will not play any DS
role in those tests. Typically this router should play some role if the traffic flows also on the
opposite direction.

The connectivity between all those entities is performed using Ethernet technology (Ethernet and
FastEthernet), but one. This one in the link between the CORE router (3620) and the non-active
EDGE (2500), which is a Serial line. The choice of this technology was made intentionally, to
allow us to configure a low bandwidth on that point and force congestion. For all the tests here
performed, the bandwidth on this link was fixed at 4 Mbit/s.

In order to ease the marking and analysis process, all the addresses were attributed by hand. All
of them are represented on the Figure. For routing purposes, RIPng was activated.

Equipment

The equipment used on the testbed and their characteristics can be seen on Figure 13-7.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 61 of 86

 Equipment
Characteristics

Router EDGE

incoming

Router
CORE

Router EDGE

outgoing

PC Tx

Sender

PC Rx

Receiver

Platform Cisco Cisco Cisco i386 i386

Model 3640 Series 3640 Series 2500 Series "Blank" PC "Blank" PC

CPU
R4700

100MHz

R4700

80MHz
Processor
68030

Pentium II

266 MHz

(cache512KB
)

Pentium II

300 MHz

(cache512K
B)

Memory 60MB RAM 60MB RAM 8MB RAM
64MB RAM

(swap
256MB)

64MB RAM

(swap
256MB)

Network
Interfaces Card

2
FastEthernet
Cisco card

1
FastEthernet
Cisco card

1 Serial
Cisco card

1 FastEthernet
Cisco card

1 Serial Cisco
card

1 Ethernet
card -3COM
series 59x

(driver3c59x)

1 Ethernet
card -3COM
series 59x

(drive3c59x)

Operating
System

Cisco IOS

12.2(13)T

Cisco IOS

12.2(13)T

Cisco IOS

12.2(2)T

Linux 7.2

(kernel
2.4.16)

Linux 7.1

(kernel
2.4.7)

Figure 13-7: Characteristics of the equipment of the testbed.

The following section will describe the tests that were performed and the information as well as
the conclusions we achieved about. On all the tests, the EDGE functionalities were always
implemented on the EDGE router and the CORE functionalities on the CORE router. Although
on a real scenario the EDGE router should also implement CORE functionalities on its outgoing
interface, on these tests this task was never performed that way.

Tools

The main tools used in these tests were MGEN/DREC for traffic generation and traffic analysis
and tcpdump for traffic analysis. Other basic Linux tools will be always used as well as the Excel
for graphics generation.

Conformance tests

On the following sections it will be presented the tests that we perform related to different pieces
of the DiffServ behavior. For every test, the following sections will explain the objective of the
test, the configuration on the Cisco platforms using the CLI (Command Line Interface), the
results obtained and some comments about the Cisco performance on every issue.

The tests will focus on the behavior each task is supposed to exhibit, using the standards PHBs
as a reference. For simplicity reasons, not all the PHBs were used (just the EF, AF1, AF4 and
BE). However, the results obtained should be enough to conclude that everything is working
properly or not.

Due to existing calculations with the MGEN tool, the packet size will have always the value
1232.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 62 of 86

13.3.1 Traffic Conditioning (TC)

The Traffic Conditioning tasks performed on the EDGE routers are evaluated on this section.
Three different tasks will be assessed: the marking, the policing, either with dropping or
remarking, and the shaping.

13.3.1.1 Marking

The marking task is performed basically in two steps. The first one when the different flows are
evaluated based on the addresses, protocols, ports and so on and, the second one when the proper
DSCP code is set into the packet.

The tests basically send different traffic from the sender to the receiver, with different network
parameters. The parameter based on which the packets are distinguished is the destination port.

The following sections contain the configuration and the achieved results.

Configurations

To configure the router to perform marking it is necessary firstly to define the different classes of
traffic that will be supported. In these classes, the network parameters that should distinguish the
flows and classify them are defined. Typically, IPv6 ACLs (ACcess Lists) are used for that.
Then, using the policy-map command, the DSCP is set into the packets accordingly to the
classification made. Finally, when the policy-map is concluded, it must be applied to the desired
interface (the incoming interface).

This was the configuration used for those tests.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 63 of 86

! for routing purposes
ipv6 unicast-routing
ipv6 cef

! IPv6 ACLs in order to classify the incoming flows.
ipv6 access-list EF
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60010

ipv6 access-list AF11
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60021

ipv6 access-list AF12
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60022

ipv6 access-list AF13
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60023

ipv6 access-list AF41
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60031

! Classes to define the different classifications.
class-map match-all AF41

match access-group name AF41
class-map match-all EF

match access-group name EF
class-map match-all AF12

match access-group name AF12
class-map match-all AF13

match access-group name AF13
class-map match-all AF11

match access-group name AF11

! Definition of the policy based on the classes. The DSCP is set accordingly.
policy-map edge

class EF
set dscp ef

class AF11
set dscp af11

class AF12
set dscp af12

class AF13
set dscp af13

class AF41
set dscp af41

! Apply the configuration to the target interface for input traffic.
interface FastEthernet0/0
service-policy input edge

Results

The traffic was generated using the MGEN tool. Taking into account the adopted configuration,
the packets will be marked depending on the destination port. Therefore, different commands
like the following were executed for different destination ports, using different packet sizes, and
for different rates.

./mgen6 -b 3ffe:3103:0:4::1,<dest_port*> -r <rate> -s <size> -d 10 -i eth0 200000

To check if the packets are coming marked or not, the tcpdump tool was used, identifying the
bits 4 to 11 of the IPv6 packet as the ones corresponding to the TC (Traffic Class) byte; i.e. the
2nd and 3rd hexadecimal characters.

Examples of the results achieved with the tcpdump are the following.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 64 of 86

! EF DSCP
13:21:57.146122 3ffe:3103:0:1::1.1257 > 3ffe:3103:0:4::1.60010: udp 1232 [class 0xb8]

6b80 0000 04d8 113d 3ffe 3103 0000 0001
0000 0000 0000 0001 3ffe 3103 0000 0004
0000 0000 0000 0001 04e9 ea6a 04d8 1c95
0000 0323 3df8 909c 0005 c587 0000 0001
3ffe 3103 0000 0004 0000 0000 0000 0001
0000

! AF41 DSCP
13:01:36.036122 3ffe:3103:0:1::1.1253 > 3ffe:3103:0:4::1.60031: udp 1232 [class 0x88]

6880 0000 04d8 113d 3ffe 3103 0000 0001
0000 0000 0000 0001 3ffe 3103 0000 0004
0000 0000 0000 0001 04e5 ea7f 04d8 e7cc
0000 0008 3df8 8bd7 0005 021f 0000 0001
3ffe 3103 0000 0004 0000 0000 0000 0001
0000

! AF11 DSCP
13:20:23.756122 3ffe:3103:0:1::1.1257 > 3ffe:3103:0:4::1.60021: udp 1232 [class 0x28]

6280 0000 04d8 113d 3ffe 3103 0000 0001
0000 0000 0000 0001 3ffe 3103 0000 0004
0000 0000 0000 0001 04e9 ea75 04d8 cf8f
0000 01be 3df8 903e 000f 143b 0000 0001
3ffe 3103 0000 0004 0000 0000 0000 0001
0000

! BE DSCP
13:22:26.766122 3ffe:3103:0:1::1.1257 > 3ffe:3103:0:4::1.60000: udp 1232

6000 0000 04d8 113d 3ffe 3103 0000 0001
0000 0000 0000 0001 3ffe 3103 0000 0004
0000 0000 0000 0001 04e9 ea60 04d8 a70b
0000 02cb 3df8 90b9 000f 3b4c 0000 0001
3ffe 3103 0000 0004 0000 0000 0000 0001
0000

From the TC values (bold) the DSCP value should be derived. For example, for the first capture,
the TC value of 0xb8 (1011 1000) will result on the DSCP value of 101110, considering the 6
most significant bits (1011 1000) . In hexadecimal representation, 10 1110= 0x2E, which is the
normalised code for the EF PHB. For all the other TC values, similar operations can be
performed, in order to check if the marking operation is correctly performed. One important
thing to note is that the BE traffic is not marked because, by default, every flows has a TC of
0x00; i.e. is BE.

So, the results achieved shows that the marking is correctly performed for all the flows and for
different rates. This task is performed as expected.

13.3.1.2 Policing

This task adds to marking the capability to police the traffic sent by the customers, in order to
proceed with either dropping or remarking of the exceeding packets. The action to be taken
depends of the measure agreed in those cases.

For that reason, the tests consist in these following two aspects. The first one, to confirm, again,
that the marking is being performed and, the second one, to check if the police is being applied
correctly both for dropping and remarking.

The following sections contain the configuration and the achieved results.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 65 of 86

Configurations

The configuration of the policing is very close to the marking one. It is already necessary to
define the IPv6 ACLs and classes in order to classify and filter the traffic. The difference is on
the policy-map definition. In this case for each class (within the class mode), a CIR (Committed
Information Rate) is defined. The CIR value defines the threshold value for that class (flow) and,
if the customer sends more traffic than this value one action is taking; otherwise, another action
will be taken.

For example, below is shown the case for EF.

class EF
 police cir 1000000
 conform-action set-dscp-transmit ef
 exceed-action drop

If the value sent is less than 1 Mbit/s the action to be taken (conform-action) is to mark the
packets with the ef DSCP code (0x2E). For the traffic sent beyond 1 Mbit/s, the action to be
taken (exceed-action) is dropping the exceeding packet.

Another example is the AF12.

class AF12
 police cir 500000
 conform-action set-dscp-transmit af12
 exceed-action set-dscp-transmit default

In this case the conform-action is similar, but the action to be taken for the exceeding packets is
set the DSCP with the value default. The value default is the BE; i.e. DSCP=0x00. This is a
remarking example.

The following was the configuration used for those tests.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 66 of 86

! IPv6 ACLs in order to classify the incoming flows.
ipv6 access-list EF
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60010

ipv6 access-list AF11
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60021

ipv6 access-list AF12
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60022

ipv6 access-list AF13
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60023

ipv6 access-list AF41
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60031

! Classes to define the different classifications.
class-map match-all AF41

match access-group name AF41
class-map match-all EF

match access-group name EF
class-map match-all AF12

match access-group name AF12
class-map match-all AF13

match access-group name AF13
class-map match-all AF11

match access-group name AF11

! Definition of the policy based on the classes. The DSCP is set accordingly.
policy-map edge
class EF

police cir 1000000
conform-action set-dscp-transmit ef
exceed-action drop

class AF12
police cir 500000

conform-action set-dscp-transmit af12
exceed-action set-dscp-transmit default

class AF13
police cir 500000

conform-action set-dscp-transmit af13
exceed-action set-dscp-transmit default

class AF41
police cir 1500000

conform-action set-dscp-transmit af41
exceed-action set-dscp-transmit default

class AF11
police cir 500000

conform-action set-dscp-transmit af11
exceed-action set-dscp-transmit default

! Apply the configuration to the target interface for the input traffic.
interface FastEthernet0/0
service-policy input edge

With this configuration, the traffic to be marked as EF, will be dropped beyond 1 Mbit/s. The
AF41 traffic will be remarked to BE beyond 1.5 Mbit/s as well as each AF1x will be also
remarked beyond the 0.5 Mbit/s threshold. Finally, the BE traffic is neither marked nor policed.

Results

The traffic was generated using the MGEN tool, as for the Marking tests. In this case, in order to
test the drop and the remarking, different specific rates were sent.

1. Dropping

To test the dropping mechanism configured on the EF class the following tests were performed.
For EF traffic, the traffic beyond 1 Mbit/s should be dropped.

1 Mbit/s

Firstly, the sender sends 1 Mbit/s.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 67 of 86

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 98 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

./drec6 -i eth1 -p 60010 -s 200000 tests/test
*and the information obtained using ./decode tests/test | ./mcalc6

The results obtained with the tcpdump show that the packets are well marked.

! EF traffic
15:48:15.666122 3ffe:3103:0:1::1.1276 > 3ffe:3103:0:4::1.60031: udp 1232 [class 0x88]

6b80 0000 04d8 113d 3ffe 3103 0000 0001
0000 0000 0000 0001 3ffe 3103 0000 0004
0000 0000 0000 0001 04fc ea7f 04d8 c171
0000 0352 3df8 b2e6 0006 fe08 0000 0001
3ffe 3103 0000 0004 0000 0000 0000 0001
0000

And the results obtained with the MGEN/DREC show that all the packets arrive to the receiver
as expected.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 981 pkts
MCALC: Total recv packet rate : 97.962 pkt/sec
MCALC: Total recv data rate : 966.496 kbps
MCALC: Total packets desynchronized: 981 pkts
MCALC: Est. num pkts dropped : 0 pkts

2 Mbit/s

After, the sender sends 2 Mbit/s

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 195 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

./drec6 -i eth1 -p 60010 -s 200000 tests/test
*and the information obtained using ./decode tests/test | ./mcalc6

The results obtained with the tcpdump show that the packets received are well marked.

! EF traffic
15:48:15.666122 3ffe:3103:0:1::1.1276 > 3ffe:3103:0:4::1.60031: udp 1232 [class 0x88]

6b80 0000 04d8 113d 3ffe 3103 0000 0001
0000 0000 0000 0001 3ffe 3103 0000 0004
0000 0000 0000 0001 04fc ea7f 04d8 c171
0000 0352 3df8 b2e6 0006 fe08 0000 0001
3ffe 3103 0000 0004 0000 0000 0000 0001
0000

And the results obtained with the MGEN/DREC show that just packets till around 1 Mbit/s
arrived to the receiver. The edge router, as expected, dropped the exceeding packets.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 68 of 86

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 989 pkts
MCALC: Total recv packet rate : 98.839 pkt/sec
MCALC: Total recv data rate : 975.139 kbps
MCALC: Total packets desynchronized: 989 pkts
MCALC: Est. num pkts dropped : 960 pkts

2. Remarking

To tests the remarking mechanism configured for example on the AF41 class, the following tests
were performed. For the AF41 traffic, the packets beyond 1.5 Mbit/s should be remarked to BE
traffic.

1.5 Mbit/s

Firstly, the sender sends 1.5 Mbit/s

./mgen6 -b 3ffe:3103:0:4::1,60031 -r 146 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

./drec6 -i eth1 -p 60031 -s 200000 tests/test
*and the information obtained using ./decode tests/test | ./mcalc6

And the results obtained with the MGEN/DREC show that all the packets arrive to the receiver
as well as expected.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1460 pkts
MCALC: Total recv packet rate : 145.957 pkt/sec
MCALC: Total recv data rate : 1439.538 kbps
MCALC: Total packets desynchronized: 1460 pkts
MCALC: Est. num pkts dropped : 0 pkts

Also, the arrived packets are all marked on the DSCP field. That is what can be seen with the
command.

tcpdump -n -x -i eth1 | grep 6880 > a

This will collect in file a the first line of the packets marked as AF41; i.e. with the first 12 bits
being 0x688. Making a 'vi a' as shown below, the total number of packets can be evaluated
knowing the number of lines achieved on the a file (the final lines of the vi editor).

6880 0000 04d8 113d 3ffe 3103 0000 0001
6880 0000 04d8 113d 3ffe 3103 0000 0001

"a" [noeol] 1460L, 61440C

Note: A total of 1460 packets were sent.

As expected, all the packets were marked on the AF41 DSCP code, and none packets were
remarked as BE.

1 Mbit/s

After, the sender sends 2 Mbit/s.

./mgen6 -b 3ffe:3103:0:4::1,60031 -r 195 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 69 of 86

./drec6 -i eth1 -p 60031 -s 200000 tests/test
*and the information obtained using ./decode tests/test | ./mcalc6

And the results obtained with the MGEN/DREC show that all the packets arrive to the receiver
as expected.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1950 pkts
MCALC: Total recv packet rate : 194.976 pkt/sec
MCALC: Total recv data rate : 1922.671 kbps
MCALC: Total packets desynchronized: 1950 pkts
MCALC: Est. num pkts dropped : 0 pkts

However, not all the arrived packets were marked with EF PHB. That is what can be seen with
the command.

tcpdump -n -x -i eth1 | grep 6880 > a

This command will collect in the file called 'a' the first line of the packets marked as AF41; i.e
with the first 12 bits at 688. Making 'vi a' as shown below, the number of total packets can be
achieved knowing the number of lines achieved on the a file (the final lines of the vi editor).

6880 0000 04d8 113d 3ffe 3103 0000 0001
6880 0000 04d8 113d 3ffe 3103 0000 0001

"a" [noeol] 1490L, 65536C

Note: A total of 1490 packets were received as EF (about 1.5 Mbit/s.)

The file has just the correspondent to about 1.5 Mbit/s. That means that just this amount of traffic
was marked as AF41. The remaining traffic was marked as BE as we can see making the
command.

tcpdump -n -x -i eth1 | grep 6000 > a

And collecting the packets arrived with DSCP 0x00. In this case the a file has the following.

6000 0000 04d8 3a40 3ffe 3103 0000 0004
6000 0000 04d8 3a40 3ffe 3103 0000 0004

"a" [noeol] 460L, 20480C

So, the results achieved shows that the policing is correctly performed for all the situations,
either for drop or remarking functions. This task is performed as expected.

13.3.1.3 Shaping

This task adds to the marking the capability to shape some flows at a given threshold, dropping
the remaining packet (when the TB starts to lose packets), and also forcing a constant inter-
packet time.

The following sections contain the configuration and the achieved results.

Configurations

For this functionality, what is expected is that the incoming packets could be shaped. However,
the Cisco implementation is not able to that on the ingress interfaces. For that reason this
configuration was performed on the outgoing interface.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 70 of 86

These tests used exactly the same configuration as for the marking tests, adding the configuration
related to the shaping component. For this configuration the shape command was used the
following way.

policy-map edge-out
class EF
shape average 1000000

The shape threshold is configured to 1 Mbit/s and other parameters like busts, were left by
default.

The following was the configuration used for those tests.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 71 of 86

! IPv6 ACLs in order to classify the incoming flows.
ipv6 access-list EF
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60010

ipv6 access-list AF11
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60021

ipv6 access-list AF12
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60022

ipv6 access-list AF13
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60023

ipv6 access-list AF41
permit udp 3FFE:3103:0:1::/64 3FFE:3103:0:4::/64 eq 60031

! Classes to define the different classifications.
class-map match-all AF41

match access-group name AF41
class-map match-all EF

match access-group name EF
class-map match-all AF12

match access-group name AF12
class-map match-all AF13

match access-group name AF13
class-map match-all AF11

match access-group name AF11

! Definition of the policy based on the classes. The DSCP is set accordingly.
policy-map edge
class EF

police cir 1000000
conform-action set-dscp-transmit ef
exceed-action drop

class AF12
police cir 500000

conform-action set-dscp-transmit af12
exceed-action set-dscp-transmit default

class AF13
police cir 500000

conform-action set-dscp-transmit af13
exceed-action set-dscp-transmit default

class AF41
police cir 1500000

conform-action set-dscp-transmit af41
exceed-action set-dscp-transmit default

class AF11
police cir 500000

conform-action set-dscp-transmit af11
exceed-action set-dscp-transmit default

! Apply the configuration to the target interface for the input traffic.
interface FastEthernet0/0
service-policy input edge

! Shaping Policy-map.
policy-map edge-out

class EF
shape average 1000000

! Apply the shaping configuration to the outgoing interface.
interface FastEthernet0/1
service-policy output edge-out

Results

For those tests, the traffic was generated using the MGEN tool. In this case, in order to test the
shaping with and without drop, different specific rates were sent. The shaping was applied to just
to the EF class.

1 Mbit/s

The sender sends 1 Mbit/s.

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 98 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 72 of 86

./drec6 -i eth1 -p 60010 -s 200000 tests/test
*and the information obtained using ./decode tests/test | ./mcalc6

The results obtained with the MGEN/DREC show that all the packets arrive to the receiver as
well as expected.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 981 pkts
MCALC: Total recv packet rate : 96.902 pkt/sec
MCALC: Total recv data rate : 956.043 kbps
MCALC: Total packets desynchronized: 981 pkts
MCALC: Est. num pkts dropped : 0 pkts

2 Mbit/s

After, the sender sends 2 Mbit/s.

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 195 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

./drec6 -i eth1 -p 60010 -s 200000 tests/test
*and the information obtained using ./decode tests/test | ./mcalc6

Now, the results obtained with the MGEN/DREC show that, just packets till around 1 Mbit/s
arrived to the receiver. The edge router, as expected, dropped the exceeding packets, using the
shaping mechanism.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1034 pkts
MCALC: Total recv packet rate : 96.832 pkt/sec
MCALC: Total recv data rate : 955.299 kbps
MCALC: Total packets desynchronized: 1034 pkts
MCALC: Est. num pkts dropped : 916 pkts

So, the results achieved show that the shaping is correctly performed for all the situations. This
task is performed as expected.

13.3.2 Per Hop Behaviour (PHB)

The PHB is the treatment that a given packet receives from a network node. There are some
typical treatments normalised yet by the IETF that is interesting to assess how they could be
implemented by Cisco.

In this chapter the behaviour of the EF, AF and BE traffic will be evaluated. There are several
important issues to take into account. For the EF traffic, check if is really prioritised and its rate
is independent of the rest of the traffic (up to a given contracted value). Also, the capability to
insure a minimum bandwidth for the different AF classes should be respected (the drop
precedence issues will be studied later in more detail). On the other hand, the BE traffic should
behave as expected, don't interfering with the rest of the most priority traffic.

All this behaviour could be achieved through the correct configuration of different queuing
(scheduling) mechanisms available on Cisco implementation.

The next section will show the configurations and the results achieved with the following tests.
Also the conclusions and the overall evaluation will be in focus.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 73 of 86

Two Scenarios

The configurations will be presented on this section refers to two scenarios. In the first one, only
the EF and BE traffic is available. In the second one, more two AF classes are present. In order
to easy the testing process and because the use of just a few AF classes can give all the necessary
information, we decided to just use two AF classes, and don't use all the 4 classes (and not the 12
possibilities).

13.3.2.1 EF and BE

This first configuration refers to the scenario when just EF and BE traffics are present.

! Class definition, based JUST on the dscp field.
class-map match-all EF

match protocol ipv6
match dscp ef

! Policy-map defined one EF class with a maximum of 1000 Kb (peak rate for shaping).
policy-map core

class EF
priority 1000

class class-default
fair-queue

! Apply the policy to the taget interface (for outgoing packets).
interface Serial0/0

service-policy output core

This configuration is very similar to the one performed previously for the TC tasks. It has also
three steps: class definition, policy definition and policy applying to a given interface.

In this case, it can be seen that the classes definition is not based on flow characteristics as before
(through the IPv6 ACLs), but to aggregated ones; i.e. the DSCP field. In some cases, as for the
AF classes, a class is built including three DP codes.

The configuration shows that a command match protocol ipv6 is made in order to match IPv6
packets. It is interesting to note that a logic AND should be applied on every class in order to
insure that just the EF IPv6 traffic match this classes. Otherwise, also the IPv4 packets will be
handled together on the same queuing mechanism. This is a very interesting capability, because
this allows the treatment of the traffic belonging to both protocols using the same policy, and
sharing the same resources without any previously fixed partitions. This can be considered as a
very useful "transition mechanism".

On the policy definition just one class is defined: the EF class. This class will receive the traffic
marked as EF and will have strict priority over every other. This is the way to insure that the rate
is independent of the remaining traffic. However, these properties are just respected up to a
predefined value of 1000Kbit/s. This avoids somehow the starvation problem.

The other class (class-default) was not previously defined because it exists always and receives
all the packets not matching the other class defined. Therefore, all the non-EF traffic received
will be considered BE.

Finally, the application of the policy to the outgoing interface in made the same as for TC tasks.

Results

For those tests on EF and BE, the traffic was generated using the MGEN tool.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 74 of 86

EF 1 Mbit/s and BE 4 Mbit/s

Firstly, on the sender, two flows are send to the receiver using the following MGEN commands.

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 98 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60000 -r 390 -s 1232 -d 10 -i eth0 200000

And, on the receiver, the packets are received using the DREC, with the respective DREC
commands.

./drec6 -i eth1 -p 60010 -s 200000 tests/testEF

./drec6 -i eth1 -p 60000 -s 200000 tests/testBE
*and the information obtained using ./decode tests/test | ./mcalc6

With those commands, two flows of 1 and 4 Mbit/s are sent to the receiver, respectively for EF
and BE traffics (marked accordingly on the DSCP field by the EDGE router). Remember that the
maximum outgoing bandwidth is 4 Mbit/s, so it is expected that some packets be dropped.

The results obtained with the MGEN/DREC, show that all the EF packets arrive to the receiver.
None packets were loosed. On the other hand, the BE traffic has a huge loss. This loss
corresponds exactly to the extra-bandwidth sent to the network. I.e. it was sent a total of 5
Mbit/s, the link has a maximum of 4 Mbit/s and all the loss noticed, about 1 Mbit/s, corresponds
to BE traffic.

For EF traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 981 pkts
MCALC: Total recv packet rate : 97.923 pkt/sec
MCALC: Total recv data rate : 966.119 kbps
MCALC: Total packets desynchronized: 981 pkts
MCALC: Est. num pkts dropped : 0 pkts

For BE traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 2992 pkts
MCALC: Total recv packet rate : 294.272 pkt/sec
MCALC: Total recv data rate : 2901.315 kbps
MCALC: Total packets desynchronized: 2992 pkts
MCALC: Est. num pkts dropped : 908 pkts

This is the behaviour expected, because the EF traffic was independent of the rest of the traffic,
and has no loss. The BE also acts as expected just getting the exceeding amount of bandwidth.

EF 2 Mbit/s and BE 4 Mbit/s

On the second test, traffics of 2 Mbit/s and 4 Mbit/s are sent to the receiver, respectively for EF
and BE traffic.

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60000 -r 390 -s 1232 -d 10 -i eth0 200000

And, on the receiver the packets are received with the DREC.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 75 of 86

./drec6 -i eth1 -p 60010 -s 200000 tests/testEF

./drec6 -i eth1 -p 60000 -s 200000 tests/testBE
*and the information obtained using ./decode tests/test | ./mcalc6

In this case, also 2 Mbit/s are sent beyond the maximum interface bandwidth (4 Mbit/s).

Now, the results obtained with the MGEN/DREC show a different scenario.

For EF traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1034 pkts
MCALC: Total recv packet rate : 96.832 pkt/sec
MCALC: Total recv data rate : 955.299 kbps
MCALC: Total packets desynchronized: 1034 pkts
MCALC: Est. num pkts dropped : 916 pkts

For BE traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 2981 pkts
MCALC: Total recv packet rate : 293.190 pkt/sec
MCALC: Total recv data rate : 2890.649 kbps
MCALC: Total packets desynchronized: 2981 pkts
MCALC: Est. num pkts dropped : 918 pkts

So, the results achieved show that the EF traffic beyond the 1000 Kbit/s (1 Mbit/s), defined as a
limit for EF traffic, was dropped. The rest of the traffic is, as before, insured independently of the
remaining traffic. The BE traffic has also a loss of around 1 Mbit/s as expected.

These tests show that the behavior achieved is the one previously expected and accordingly to
the PHB definition.

13.3.2.2 EF, AF and BE

This second configuration refers to the scenario when the EF, AF and BE traffics are
simultaneously present.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 76 of 86

! classes definition, based JUST on the dscp field.
class-map match-all AF41

match protocol ipv6
match dscp af41

class-map match-all EF
match protocol ipv6
match dscp ef

class-map match-all AF12
match protocol ipv6
match dscp af12

class-map match-all AF13
match protocol ipv6
match dscp af13

class-map match-all AF11
match protocol ipv6
match dscp af11

class-map match-all AF4
match protocol ipv6
match dscp af41 af42 af43

class-map match-all AF1
match protocol ipv6
match dscp af11 af12 af13

! policy-map defined one EF class with a maximum of 1000 Kb (peak rate for shaping).
policy-map core

class EF
priority 1000

class AF1
bandwidth 1500

class AF4
bandwidth 1000

class class-default
fair-queue

! apply the policy to the taget interface (for outgoing packets).
interface Serial0/0
max-reserved-bandwidth 100
service-policy output core

On this configuration, the only difference to the previous one, is the addition of two more classes
(because just were used two AF classes: AF1x and AF4). On these classes, the bandwidth
keyword enables the definition of guaranteed bandwidths. On this test, the AF1 has a guaranteed
bandwidth of 1500Kbit/s, while the AF4 has 1000Kbit/s.

What the actual policy-map definition does, is basically reserving a bandwidth of 3.5 Mbit/s,
which is the sum of all the bandwidth that it must ensure; i.e. 1000 + 1500 + 1000 Kbit/s. By
default, the maximum bandwidth of an interface that can be reserved is 75%. However, in that
case, the total amount of bandwidth is 3.5 Mbit/s and the interface bandwidth limit is 4 Mbit/s.
For that reason, the command max-reserved-bandwidth is set to 100% in order to allow the
interface to reserve up to the total available bandwidth.

These are the configuration of the CORE router, however, in order to complete the scenario, the
EDGE router is also performing previously the marking task according. In those tests, the
configuration used on the EDGE router is the one specified on the section “Marking” of TC. In
this configuration just marking tasks are performed (not any policing), in order to provoke
intentionally a given degree of congestion on the CORE router.

Results

For those tests on EF, AF and BE, the traffic was generated using the MGEN tool.

EF 1 Mbit/s, AF1 2 Mbit/s, AF4 2 Mbit/s and BE 2 Mbit/s

On the sender, four flows are send to the receiver using the following MGEN commands.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 77 of 86

./mgen6 -b 3ffe:3103:0:4::1,60010 -r 98 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60000 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60031 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60021 -r 195 -s 1232 -d 10 -i eth0 200000

And, on the receiver, the packets are received using the DREC, with the respective DREC
commands

./drec6 -i eth1 -p 60010 -s 200000 tests/testEF

./drec6 -i eth1 -p 60000 -s 200000 tests/testBE

./drec6 -i eth1 -p 60021 -s 200000 tests/testAF1

./drec6 -i eth1 -p 60031 -s 200000 tests/testAF4
*and the information obtained using ./decode tests/test | ./mcalc6

With those commands, four flows are sent to the receiver. 1 Mbit/s of EF traffic and 2 Mbit/s for
every remaining traffic, AF4, AF1 and BE. This way, the total amount of traffic sent is 7 Mbit/s.
Remember once again that the maximum outgoing bandwidth is 4 Mbit/s, so is expected that
some packets be dropped.

The results obtained with the MGEN/DREC can be seen on the following extracts.

For EF traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 965 pkts
MCALC: Total recv packet rate : 97.891 pkt/sec
MCALC: Total recv data rate : 965.818 kbps
MCALC: Total packets desynchronized: 965 pkts
MCALC: Est. num pkts dropped : 1 pkts

For AF1 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1781 pkts
MCALC: Total recv packet rate : 176.689 pkt/sec
MCALC: Total recv data rate : 1742.422 kbps
MCALC: Total packets desynchronized: 1781 pkts
MCALC: Est. num pkts dropped : 143 pkts

For AF4 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1226 pkts
MCALC: Total recv packet rate : 120.988 pkt/sec
MCALC: Total recv data rate : 1193.428 kbps
MCALC: Total packets desynchronized: 1226 pkts
MCALC: Est. num pkts dropped : 704 pkts

For BE traffic.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 78 of 86

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 66 pkts
MCALC: Total recv packet rate : 10.729 pkt/sec
MCALC: Total recv data rate : 107.367 kbps
MCALC: Total packets desynchronized: 66 pkts
MCALC: Est. num pkts dropped : 1658 pkts

To analyse if the behaviour is accordingly to what is defined on RFCs, the different rates
achieved will be studied in more detail. The achieved values can be shown on the Figure
13-8.Note that the values presented are not very precise because of small errors on the amount of
data sent.

Bandwidth \ Class EF AF1 AF4 BE

Values Achieved 965 K 1742 K 1193 K 107 K

Values Reserved/Weighs 1000 K 1500 K 1000 K (500 K)

Difference - 242 K 193 K 107 K

Figure 13-8: Table of classes rates.

Staring with the EF analysis, it can be seen that the loss is not noticeable as expected,
accordingly to the RFC. However any packet has been dropped (only one).

Regarding to the AF1 and AF4, it can be seen that both, AF1 and AF4, achieved at least the
expected 1500 and 1000 Kbit/s, respectively. Once again, this is accordingly to the RFC.

However, there are more 500 Kbit/s unallocated that should be split equally by some classes.
And these classes are the AF1 and AF4, but also the BE that has the same priority for traffic
beyond the minimum allocated (the RFC is not clear about this issue).

The way how the allocation is made, is based on the weighs, related to the allocated bandwidths.
For the AFs is clear what the allocated bandwidth is 1000 and 1500 Kbit/s. For the BE is
considered that all the unallocated bandwidth is the BE reservation (500 Kbit/s in this case). This
way the remaining is 500 Kbit/s is shared based on these weighs. As the Table shows, this is
performed correctly (approximately).

Those tests show that the behaviour achieved is the one previously expected and accordingly to
the PHB definition.

13.3.3 Drop Precedence (DP)

The Drop Precedence behaviour on the DiffServ Domains should be implemented within every
AF class, as described on the AF PHB RFC. The DP intents to drop slowly and smartly the
traffic belonging to AF classes, in order to avoid the basic Tail Drop mechanism and the
consequent global synchronisation phenomenon.

In order to give a particular study about this, this issue was separated from the PHB section.
Only one class will be used for that study: the AF1x, with the three standards DPs: AF11, AF12
and AF13. No other traffic will be sent at the same time.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 79 of 86

Configurations

The configurations used for these tests are the same as for the PHB ones, but for the class AF1.
This was the only one class selected to perform the tests. Within this class three DP were
configured, with their correspondent basic parameter.

Two configurations will be tested in order to give an information about the utilisation of different
parameters. The first is the following.

! classes definition, based JUST on the dscp field.
class-map match-all AF41

match protocol ipv6
match dscp af41

class-map match-all EF
match protocol ipv6
match dscp ef

class-map match-all AF12
match protocol ipv6
match dscp af12

class-map match-all AF13
match protocol ipv6
match dscp af13

class-map match-all AF11
match protocol ipv6
match dscp af11

class-map match-all AF4
match protocol ipv6
match dscp af41 af42 af43

class-map match-all AF1
match protocol ipv6
match dscp af11 af12 af13

! policy-map defined one EF class with a maximum of 1000 Kb (peak rate for shaping).
policy-map core

class EF
priority 1000

class AF1
bandwidth 1500
random-detect dscp-based
random-detect dscp 10 30 60 1
random-detect dscp 12 20 50 1
random-detect dscp 14 10 40 1

class AF4
bandwidth 1000

class class-default
fair-queue

! apply the policy to the taget interface (for outgoing packets).
interface Serial0/0
max-reserved-bandwidth 100
service-policy output core

Note: The values 10, 12 and 14 correspond to the DSCP codes for AF11, AF12 and AF13 respectively.

In this configuration we used the following values for the three parameters (see Figure 13-9).

Parameters DP Min

Threshold
Max

Threshold
DP on Max
Threshold

DP1 (AF11) 30 60 1

DP2 (AF12) 20 50 1

DP3 (AF13) 10 40 1

Figure 13-9: Table of parameters for the first DP test.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 80 of 86

With these parameters, a graphic like the one represented on the Figure 13-10 a) can be built.
The graphic is very helpful to understand the meaning of the parameters.

a) b)

Figure 13-10: Parameters tested for DP evaluation.

The configurations for the second tests are the following.

! classes definition, based JUST on the dscp field.
class-map match-all AF41

match protocol ipv6
match dscp af41

class-map match-all EF
match protocol ipv6
match dscp ef

class-map match-all AF12
match protocol ipv6
match dscp af12

class-map match-all AF13
match protocol ipv6
match dscp af13

class-map match-all AF11
match protocol ipv6
match dscp af11

class-map match-all AF4
match protocol ipv6
match dscp af41 af42 af43

class-map match-all AF1
match protocol ipv6
match dscp af11 af12 af13

! policy-map defined one EF class with a maximum of 1000 Kb (peak rate for shaping).
policy-map core

class EF
priority 1000

class AF1
bandwidth 1500
random-detect dscp-based
random-detect dscp 10 30 60 1
random-detect dscp 12 20 50 1
random-detect dscp 14 5 20 1

class AF4
bandwidth 1000

class class-default
fair-queue

! apply the policy to the taget interface (for outgoing packets).
interface Serial0/0
max-reserved-bandwidth 100
service-policy output core

Note: The values 10, 12 and 14 correspond to the DSCP codes for AF11, AF12 and AF13, respectively.

In this configuration the following configuration was used for the three parameters. (See Figure
13-11).

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 81 of 86

Parameters DP Min

Threshold
Max

Threshold
DP on Max
Threshold

DP1 (AF11) 30 60 1

DP2 (AF12) 20 50 1

DP3 (AF13) 5 20 1

Figure 13-11: Table of parameters for the second DP test.

With these parameters, a graphic like the one represented on the Figure 13-10 b) can be built.

Results

For those tests the traffic was generated using the MGEN tool.

AF11 2 Mbit/s, AF12 2 Mbit/s and AF13 2 Mbit/s

DP1 30-60-1, DP2 20-50-1 and DP3 10-40-1

On the sender, three flows are send to the receiver using the following MGEN commands.

./mgen6 -b 3ffe:3103:0:4::1,60021 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60022 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60023 -r 195 -s 1232 -d 10 -i eth0 200000

And, on the receiver, the packets are received using the DREC, with the respective DREC
commands.

./drec6 -i eth1 -p 60021 -s 200000 tests/testAF11

./drec6 -i eth1 -p 60022 -s 200000 tests/testAF12

./drec6 -i eth1 -p 60023 -s 200000 tests/testAF13
*and the information obtained using ./decode tests/test | ./mcalc6

With those commands, three flows are sent to the receiver. 2 Mbit/s of AF11, 2 Mbit/s AF12 and
2Mbit/s of AF13 traffic. This way, the total amount of traffic sent is 6 Mbit/s. Remember once
again that the maximum outgoing bandwidth is 4 Mbit/s, so is expected that some packets be
dropped.

The results obtained with the MGEN/DREC can be seen on the following extracts.

For AF11 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1922 pkts
MCALC: Total recv packet rate : 188.348 pkt/sec
MCALC: Total recv data rate : 1857.322 kbps
MCALC: Total packets desynchronized: 1922 pkts
MCALC: Est. num pkts dropped : 28 pkts

For AF12 traffic.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 82 of 86

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1349 pkts
MCALC: Total recv packet rate : 132.218 pkt/sec
MCALC: Total recv data rate : 1304.104 kbps
MCALC: Total packets desynchronized: 1349 pkts
MCALC: Est. num pkts dropped : 601 pkts

For AF13 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 668 pkts
MCALC: Total recv packet rate : 65.347 pkt/sec
MCALC: Total recv data rate : 645.027 kbps
MCALC: Total packets desynchronized: 668 pkts
MCALC: Est. num pkts dropped : 1282 pkts

The Figure 13-12 shows the values obtained for each DP.

Bandwidth \ DP AF11 AF12 AF13

Values Achieved 1857 K 1304 K 645 K

Figure 13-12: Table of DP rates.

What we can see is that the traffic with higher drop precedence has more loss. The degree of loss
is not linear to the values configured, and has no easy mathematics interpretation. The study of
the values to attribute to each RED curve, is a complex task and for these choice should be taken
into account many parameters. The deep study of these multi-RED values is out of the scope of
this work.

However, to understand a little bit more how different parameter interferes on the final
behaviour, the results of the second test can be analysed. The difference of these tests to the
previous ones is on the DP with the higher probability of drop (DP3) - From the values 10 - 40 -
1 to 5 - 20 - 1; i.e. most constrained values.

AF11 2 Mbit/s, AF12 2 Mbit/s and AF13 2 Mbit/s

DP1 30-60-1, DP2 20-50-1 and DP3 5-20-1

As well as previously, on the sender, three flows are send to the receiver using the following
MGEN commands.

./mgen6 -b 3ffe:3103:0:4::1,60021 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60022 -r 195 -s 1232 -d 10 -i eth0 200000

./mgen6 -b 3ffe:3103:0:4::1,60023 -r 195 -s 1232 -d 10 -i eth0 200000

And, on the receiver, the packets are received using the DREC, with the respective DREC
commands.

./drec6 -i eth1 -p 60021 -s 200000 tests/testAF11

./drec6 -i eth1 -p 60022 -s 200000 tests/testAF12

./drec6 -i eth1 -p 60023 -s 200000 tests/testAF13
*and the information obtained using ./decode tests/test | ./mcalc6

With those commands, three flows are sent to the receiver. 2 Mbit/s of AF11, 2 Mbit/s AF12 and
2Mbit/s of AF13 traffic. This way the total amount of traffic sent is 6 Mbit/s. Remember once
again that the maximum outgoing bandwidth is 4 Mbit/s, so is expected that some packets be
dropped.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 83 of 86

The results obtained with the MGEN/DREC can be seen on the following extracts.

For AF11 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1942 pkts
MCALC: Total recv packet rate : 193.194 pkt/sec
MCALC: Total recv data rate : 1905.105 kbps
MCALC: Total packets desynchronized: 1942 pkts
MCALC: Est. num pkts dropped : 8 pkts

For AF12 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 1869 pkts
MCALC: Total recv packet rate : 186.073 pkt/sec
MCALC: Total recv data rate : 1834.919 kbps
MCALC: Total packets desynchronized: 1869 pkts
MCALC: Est. num pkts dropped : 81 pkts

For AF13 traffic.

MCALC: PACKET RECEPTION STATISTICS
MCALC: Total packets received : 119 pkts
MCALC: Total recv packet rate : 12.021 pkt/sec
MCALC: Total recv data rate : 119.480 kbps
MCALC: Total packets desynchronized: 119 pkts
MCALC: Est. num pkts dropped : 1785 pkts

The Figure 13-13 shows the values obtained for each DP.

Bandwidth \ DP AF11 AF12 AF13

Values Achieved 1905 K 1834 K 119 K

Figure 13-13: Table of DP rates.

When this table in compared with the previous one, what can be seen is that the loss of the DP3
(AF13), is much higher than before. At the same time the AF12 get almost this total amount of
bandwidth.

Those tests show that the behaviour achieved is the one previously expected and accordingly to
the DP definition.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 84 of 86

14. ABOUT CPU UTILIZATION

In this section we intend to analyze the impacts of the DiffServ tasks on routers CPU utilization.

In many Service Providers, the routers along the network handle a lot of traffic, and are very
close to their maximum resources, namely in terms on CPU utilization. One thing is clear, if the
different DiffServ tasks are performed on these routers the CPU utilization will increase, and this
is an important issue to take into account, when we think on the introduction of DiffServ
mechanisms in a backbone. A good dimensioning must be previously made in order to study the
amount of traffic and processing capacity of the nodes.

The following sections don't intent to give a very deep study about the CPU utilization for the
DiffServ tasks, but just give a brief overview of what can be the impact for each task.

The results achieved on the following sections were obtained using the command on the tested
routers:

show processes cpu history

14.1 EDGE

The EDGE tests have been performed using a total of 6 Mbit/s traffic. 1.5 Mbit/s were sent for
EF, AF1, AF4 and BE. The test was performed on the Cisco 3640, which acts as EDGE router
on the previous tests. The configuration used is the one presented there.

Different EDGE tasks were tested and compared with each other's, and also compared with the
situation where no DiffServ tasks are performed.

The CPU utilization for the different EDGE tasks can be seen on the Figure 14-1. Figure 14-2
shows the same results graphically.

Time (s) 5 10 15 20 25 30 35 40 45 50 55 60

Without QoS Tasks 18 21 27 20 20 22 26 20 18 23 26 20

Marking 30 39 37 31 32 41 35 31 31 40 36 32

Marking + Shaping 31 40 48 37 32 40 48 38 32 41 48 37

Marking + Policing 31 41 42 33 33 40 42 34 32 40 43 34

Figure 14-1: Table of CPU utilization (%) - EDGE.

Many things can be seen on the Figure. The first one is that the EDGE tasks result in an
important increment of CPU usage. The average of these increments goes from around 75% to
125%. This means that the EDGE functionalities are very weighted for CPU and must be really
taken into account on DiffServ implementation dimensioning. This result is in some way
expected, because EDGE tasks are the responsible for the handling all the particular flows,
looking for addresses, ports, protocols, and so on.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 85 of 86

Figure 14-2: CPU utilization for EDGE tasks.

Observing the tasks individually, it can be seen that the marking is the task that consumes more
resources. All other tasks are less consuming but are still noticeable. On the other hand it can be
also seen that shaping needs more CPU resources than policing.

Finally, it must be also taken into account that packet size used in these test was very high, what
means that for similar rates with smaller packet sizes, the CPU utilisation will increase even
more. So, on real networks, these values can be considerably higher.

14.2 CORE

The CORE tests have been performed using also a total of 6 Mbit/s traffic. In this case, the
traffic sent for the first two tests, "without QoS tasks" and with "queuing", was 1.5 Mbit/s for
EF, AF1, AF4 and BE. On the third case, "queuing + DP", the values sent were 2 Mbit/s for
AF11, 2 Mbit/s for AF12 and 2 Mbit/s for AF13.

The test was performed on the Cisco 3620, which acts as CORE router on previous tests. The
configuration used is the one presented there.

Different CORE tasks were tested and compared with each other's, and also compared with the
situation where no DiffServ tasks are performed.

The CPU utilization for the different CORE tasks can be seen on the Figure 14-3. Figure 14-4
shows the same results graphically.

IST-2001-32161 Euro6IX TR4.1A.6: QoS over IPv6. Tests and Results

25/02/2003 – v1.4 Page 86 of 86

Time (s) 5 10 15 20 25 30 35 40 45 50 55 60

Without QoS Tasks 61 64 64 61 59 61 66 64 58 64 66 63

Queuing 61 67 63 60 60 65 67 62 62 66 64 61

Queuing + DP 72 65 61 56 73 62 60 58 74 63 63 65

Figure 14-3: Table of CPU utilization (%) - CORE.

Figure 14-4: CPU utilization for CORE tasks.

In opposition to the EDGE tasks, the Figure shows that the increment on CPU utilisation for
CORE tasks is not noticeable. This was, again, the expected result since in the CORE packets
must not be analysed on their headers, but just on the DSCP field.

Seen this Figure, we can think that the degree of utilisation in general is higher than on the
EDGE router, but this is not correct. The reason for this difference is because of the lower
computing capacity of the used CORE router.

		2003-02-25T12:57:21+0100
	Madrid
	Jordi Palet Martinez
	Soy el autor de este documento

