
 Euro6IX Consortium

Title: Document Version:

Technical Report TR4.1A.7
AAA for IPv6 protocol 1.2

Project Number: Project Acronym: Project Title:

IST-2001-32161 Euro6IX European IPv6 Internet Exchanges Backbone

Contractual Delivery Date: Actual Delivery Date: Deliverable Type* - Security**:

31/12/2002 25/02/2003 R – PU

* Type: P - Prototype, R - Report, D - Demonstrator, O - Other
** Security Class: PU- Public, PP – Restricted to other programme participants (including the Commission), RE – Restricted to a group

defined by the consortium (including the Commission), CO – Confidential, only for members of the consortium (including
the Commission)

Responsible and Editor/Author: Organization: Contributing WP:

Antonio F. Gómez-Skarmeta UMU WP4

Authors (organizations) in alphabetical order:

Rafael Marín (UMU), Gregorio Martínez (UMU), David Fernández (UPM).

Abstract:

This deliverable document introduces AAA concepts needed to deploy an AAA infrastructure in
Euro6IX network. It compiles information and ideas about how AAA could be integrated in IPv6
protocol. To be exact, it is mainly focused on integration between Mobile IPv6 and AAA architecture
in order to support roaming inside Euro6IX network.

Keywords:

Accounting, Authentication, Authorization, DIAMETER, EAP, Euro6IX, Mobile IPv6, Mobility,
Network control access, PANA, Roaming.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 2 of 6868

Revision History
Revision Date Description Author (Organization)

v0.1 9/9/2002 Start document Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.2 20/11/2002 Initial Revision Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.3 21/11/2002 First Modification Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.4 2/12/2002 Second Modification (new added sections) Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.5 3/12/2002 Updated Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.6 10/12/2002 Updated (IPv4 and IPv6 section) Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.7 11/12/2002 Updated (table of contents and index and
second revision)

Rafael Marín López (UMU)
Gregorio Martínez Pérez (UMU)
Antonio Skarmeta (UMU)

v0.8 13/12/2002 Updated (source code of test program) Rafael Marín López (UMU)
Antonio Skarmeta (UMU)

v0.9 16/12/2002 Updated (final revisions) Rafael Marín López (UMU)
Gregorio Martínez Pérez (UMU)
Antonio Skarmeta (UMU)

v1.0 18/10/2002 Updated (chapter 6) Rafael Marín López (UMU)
Gregorio Martínez Pérez (UMU)
Antonio Skarmeta (UMU)

v1.1 18/10/2002 General Revision Rafael Marín López (UMU)
Gregorio Martínez Pérez (UMU)
Antonio Skarmeta (UMU)

v1.2 25/02/2003 Logos added an PDF generated Jordi Palet (Consulintel)

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 3 of 6868

Table of contents
1. Introduction ..6

2. Objectives ..7

3. AAA Infrastructure Overview ..8

3.1 Introduction ...8

3.2 Generic AAA Server..9
3.2.1 Generic model..9
3.2.2 Simple Domain Scenario ...10
3.2.3 Multiple Domains ..12

4. AAA Protocols...16

4.1 Introduction ...16

4.2 RADIUS..16
4.2.1 RADIUS features...17
4.2.2 RADIUS drawbacks ..18
4.2.3 RADIUS and IPv6 ...19
4.2.4 RADIUS implementations...20

4.3 TACACS+ ..21
4.3.1 TACACS+ features..21
4.3.2 TACACS+ body ..22
4.3.3 TACACS+ implementations..22

4.4 DIAMETER ...22
4.4.1 DIAMETER base protocol ..22
4.4.2 DIAMETER extensions...23
4.4.3 DIAMETER implementations...24

5. Mobile IPv6 and AAA...26

5.1 Introduction ...26

5.2 AAA for Mobile IPv6 network access..27
5.2.1 Access protocol description...28
5.2.2 Mobile IPv6 Instantiation ..29
5.2.3 PANA ..30
5.2.4 AAA and PANA..32
5.2.5 EAP..32
5.2.6 An example: Secure Network Access Using Router Discovery (SNARD)33

5.3 Authentication for Mobile IPv6..34

6. Euro6IX and AAA ..36

7. IPv6 and IPv4 considerations ..38

8. Conclusions...39

9. Future Work..41

10. SUN DIAMETER implementation ..42

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 4 of 6868

10.1 Installation..42

10.2 Configuration files ...43

10.3 Dictionary: XML files ...45

10.4 Start up ...45

10.5 Basic Application: Test ...45

11. References ...65

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 5 of 6868

Table of figures
Figure 3-1: Generic AAA server... 10
Figure 3-2: Unique Domain Agent Sequence... 11
Figure 3-3: Unique Domain Pull Sequence .. 11
Figure 3-4: Unique Domain Push Sequence .. 12
Figure 3-5: Roaming Case Agent Sequence .. 12
Figure 3-6: Roaming Case Pull Sequence.. 13
Figure 3-7: Roaming Case Push Sequence.. 14
Figure 3-8: Distributed Service example .. 15
Figure 4-1: RADIUS AVP .. 17
Figure 4-2: RADIUS packet .. 17
Figure 4-3: TACACS+ packet header .. 21
Figure 5-1: AAA model for IPv6 network access... 27
Figure 5-2: Access process overview... 29
Figure 5-3: Examples of PANA models .. 31
Figure 6-1: Euro6IX and AAA: Model B example. .. 36

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 6 of 6868

1. INTRODUCTION

AAA stands for Authentication, Authorization and Accounting. It defines a general framework
regarding to these three topics:

• Authentication: The act of verifying the identity of an entity

• Authorization: The act of determining whether a requesting entity will be allowed to
access to a resource (for example a network)

• Accounting: The act of collecting information on resource usage for the purpose of trend
analysis, auditing, billing, or cost allocation

These three concepts include different frameworks and protocols in order to support Internet
services with AAA requirements. The need for analyzing these protocols and frameworks is
interesting under point of view of Euro6IX network and services because they could claim for
some mechanism to authenticate users or devices who want to access to IPv6 network or some
offered services(Authentication). Moreover, this user or device could have particular privileges
or ways to use the authenticated service. We mean it could also be needed to offer some method
to authorize a user/device to access a particular service and to define which restrictions it implies
(Authorization). Finally, it could be possible this service had a cost (as a mobile phone call) so
other mechanisms to register the use of the network or a service by this user/device could be
needed to charge her for used resources (Accounting).

These ideas are especially important when we talk about mobility and roaming scenarios,
because it is needed to be aware about which user/users can connect to a foreign network and
what things they can do inside these networks. Moreover, it could be also interesting to have a
register about those movements for charging reasons.

Therefore, although there are several AAA-aware services/applications, we mainly focus on
Mobile IPv6 and what it is needed for supporting AAA for Mobile IPv6. In this sense, several
approaches has been already released so they are analyzed in order to compile information to
obtain ideas, and conclusions which allow us to build a suitable AAA architecture for Euro6IX
network and to contribute new ideas or proposals.

Firstly, we take a look a Generic AAA framework [RFC2903] analyzing what components and
protocols are involved. After, we summarize the most important AAA protocols which take
charge of transporting AAA information through network. Following, we are going to analyze
how Mobile IPv6 can be integrated inside a defined AAA framework [AAAIPv6] and why
integration is needed. Really, the most important reason is to support roaming between networks
though furthermore several Mobile IPv6 features could be supported and improved through a
deployed AAA framework. For example, Mobile IPv6 Security whose design has been modified
during last drafts due to it is an issue truly complex. The integration of both AAA and Mobile
IPv6 tries to offer alternatives solutions based on a higher level trustworthy framework for this
difficult problem.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 7 of 6868

2. OBJECTIVES

In this semester, objectives defined for this subactivity and stated in this deliverable document
are:

• To gather information related with AAA architecture in order to get a clearer vision about
it.

• To analyze several AAA protocols and possible frameworks, obtaining conclusions about
which solution could be more suitable in order to support roaming networks and taking
into account Mobile IPv6 as protocol supporting mobility.

• To analyze more deeply user authentication and IPv6 network access control through
AAA by considering mainly Mobile IPv6.

• To define a basic AAA infrastructure based on the conclusions from the previous analysis
and having in mind the design of the Euro6IX network.

• To create a first basic a test-service just considering authentication.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 8 of 6868

3. AAA INFRASTRUCTURE OVERVIEW

3.1 Introduction

Both The Internet Engineering Task Force (IETF) and the Internet Research Task Force (IRTF)
are investigating on questions posed by Authorization, Authentication and Accounting (AAA).

There are two working groups [MOBYDICK], an IETF WG and IRTF WG (called AAAARCH
WG [AAAARCH]) dedicated to different AAA issues though they collaborate jointly. The
former takes charge of discussing and standardizing AAA protocols [AAAIETF], the latter takes
charge of definition of a generic AAA infrastructure.

Following, we are going to describe the main components of this architecture. The basic
conceptual entities/components that may be participants in an
authentication/authorization/accounting process are:

• A user who wants access to a service or resource.

• A User Home Domain (UHD) that has an agreement with the user and has the needed
information to check whether the user is allowed to obtain the requested service or
resource. This entity may carry information required to authorize the User, which might
not be known by Service Provider.

• A Service Provider (SP)'s AAA infrastructure which authorizes a service based on an
agreement with the UHD without specific knowledge about the individual user. This
agreement may contain elements that are not relevant to an individual user (e.g., the total
agreed bandwidth between the UHD and the Service Provider).

• A SP's Service Equipment which provides the service itself. This might, for example, be
a Network Access Server (NAS) in dial service, or a Router in a QoS service.

There may be bilateral agreements between pairs of organizations involved in an
authentication/authorization transaction. Agreements between organizations may take the form
of formal contracts or Service Level Agreements [SLADOC]. In fact, AAA process is based on
these bilateral agreements between entities. So, in multi-domain environments, the results of the
user’s request depend on both agreements being honored.

Therefore, relationship of trust must be established between both domains. For example, it could
be achieved through Public Key Infrastructures (using cross-certification [RFC3280]), by setting
VPN between both domains AAA servers or sharing a key secret or password and so on. Thank
to these trust “chains”, authentication/authorization transactions can be taken place. Finally, all
these relationships are also used to establish trust relationship between user and service provider.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 9 of 6868

3.2 Generic AAA Server

To carry out the authentication and authorization process, the user or an entity working on the
user’s behalf must send a well-formatted request to an AAA server inside an AAA infrastructure.
It has an internal rules to evaluate this request and take an authentication and authorization (and
possibly accounting) decisions about it. These rules can be determined by means of certain
policies stored in a repository which allows AAA server to take a decision about certain request.
Furthermore, many applications could use this AAA server and send different requests about
different services and each one could have particular parameters. So, AAA server should know
how manage this application specific information. Furthermore, service’s conditions could
change and certain new data elements that were not initially considered should be managed. So,
a generic AAA server should have mechanisms in order to manage these particular situations.
Having a policies repository, new policies and new information could be stored in order to
manage new data elements or service’s new conditions. It also interesting to store log
information about AAA server operation and so, an event repository could be used.

Ultimately AAA server needs to interact with a module that takes charge of managing resources
and configuring the service equipment to carry out the service (service provider case). Even, it
could be involved in authentication/authorization process because it has application specific
information knowledge required. These modules are called Application Specific Module (ASM).
In general, ASMs could be required by different entities, i.e. UHD, due to they own needed
information to manage a service or access to specific database or to interpret application specific
parameters. Finally, to maintain the functionality of the generic AAA server, the interface or API
between the server and modules must remain the same.

Instead of all these resources (policy repository and ASMs) and due to multiple administrative
domains an AAA server might have to forward requests to other AAA servers. The protocol used
by two or more AAA servers can communicate themselves should be a peer-to-peer. The most
common protocols such as DIAMETER, RADIUS and TACACS+ will be summarized in
chapter 4.

3.2.1 Generic model

With all these components (Application Service Module; Policy and Event Repository and
Request Forwarding) an AAA server (see Figure 3-1) would be able to handle AAA requests. So
when a request is sent to AAA server, this one:

• Inspects the parameters of the request

• Determines what authentication / authorization is requested

• Retrieves a policy from the repository and execute some local functions based on
information obtained from the policy.

• Takes a decision about what it should be done with this request.

• Sends it to an specific ASM that can process this request

• Queries more information from policy repository.

• Forwards the request to another AAA server for evaluation.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 10 of 6868

Application
Specific Module

v AAA Server

Policy and event
repository

Connection to another AAA server

Application
Specific Module

Application
Specific Module

Request

Figure 3-1: Generic AAA server

This general AAA server can interoperate in different scenarios [RFC2904], alone or with other
AAA servers inside an AAA infrastructure. There are two general scenarios:

• Single Domain Scenario

• Multi-Domain Scenario

o Roaming

o Distributed Services

3.2.2 Simple Domain Scenario

In this case, User Home Domain (UHD) is also the Service Provider (SP) and it includes user,
SP’s AAA infrastructure and SP’s Service Equipment.

There are several ways how an user can access to the AAA infrastructure to request a service or
authenticates itself. During next explanation in order to simplify it we talk about AAA server as
one of the possible servers inside AAA infrastructure where user connects.

3.2.2.1 Way 1 (Agent sequence)

A user sends its request to SP’s AAA server and it applies a policy associated with this user and
the particular service being requested. If this user is correctly authenticated and authorized, AAA
server will interact with Service Equipment in order to carry out the request service. A classic
example of this service could be a printing service.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 11 of 6868

AAA Server/Infrastructure

Service Equipment

User

USER HOME DOMAIN (UNIQUE DOMAIN)

1

2 3

4

Figure 3-2: Unique Domain Agent Sequence

3.2.2.2 Way 2 (Pull sequence)

An user directly sends its request and authentication information to Service Equipment that
forwards them to AAA server which evaluates the request and returns a response (it could be an
action in the Service Equipment) which sets up the requested service. We even think which
Service Equipment could be more additional information about this user (maybe obtained of a
previous request) so it would not be needed to forward the request to the AAA server. This
information could be cached in the Service Equipment.

AAA Server/Infrastructure

Service Equipment

User

USER HOME DOMAIN (UNIQUE DOMAIN)

1

4

2 3

Figure 3-3: Unique Domain Pull Sequence

This schema is typically used in Dial-in applications.

3.2.2.3 Way 3 (Push sequence)

A user firstly sends its request and authentication information to AAA server that evaluates them
and returns a ticket or a certificate that it will allow user (if it is valid) to access the service. This
information (ticket or certificate) must be sent to the Service Provider in order to carry out the
request. A similar schema is used by Kerberos [RFC1510].

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 12 of 6868

AAA Server/Infrastructure

Service Equipment

User

USER HOME DOMAIN (UNIQUE DOMAIN)

1

2

3

4

Figure 3-4: Unique Domain Push Sequence

3.2.3 Multiple Domains

There are situations where organizations that authenticate and authorize the user are different
from the organization providing the service. In this case two domains are involved to carry out
the user’s request. This situation has been studied in the Roaming Operations Working Group
[ROAMOPS]. Two scenarios are exposed: Roaming case and Distributed Services.

3.2.3.1 Roaming case

Just like Simple Domain case, there are three different situations to be explained.

Way 1 (Agent sequence)

An user sends its request and authentication information to UHD‘s AAA server that evaluates
them. If this user is allowed, its request is forwarded to SP’s AAA server.

AAA Server/Infrastructure

User

USER HOME DOMAIN (UNIQUE DOMAIN)

1

6 AAA Server/Infrastructure

Service Equipment

SERVICE PROVIDER DOMAIN

4 3

2

5

Figure 3-5: Roaming Case Agent Sequence

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 13 of 6868

Thank to trust agreements between both domains SP’s AAA infrastructure can trust user’s
information sent by UHD’s AAA infrastructure and forwards this request to Service Equipment
in order to carry out the service. Results of the execution of the service will be sent to the user
through both AAA infrastructures.

Way 2 (Pull sequence)

An user sends its request and authentication information to SP’s Service Equipment and it
forwards both components to its local AAA server. This one gets in touch with UHD’s AAA
infrastructure in order to evaluate the information sent by user from SP’s domain. Just like
Single Domain case, SP’s AAA server or even SP’s Service Equipment could have stored
information about the user due to a previous user access to this service. This information would
be valid while granted permission lasts or whatever another policy applied to it.

AAA Server/Infrastructure

Service Equipment

User

SERVICE PROVIDER DOMAIN

1

6

2 5

AAA Server/Infrastructure

USER HOME DOMAIN (UNIQUE DOMAIN)

3

4

Figure 3-6: Roaming Case Pull Sequence

This schema is used by Mobile IP proposal.

Way 3 (Push sequence)

An user gets a ticket or certificate from UHD which must give to SP’s AAA server so it can
evaluate this ticket/certificate to verify if it is valid and to inform Service Equipment in order to
carry out the requested service.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 14 of 6868

User

USER HOME DOMAIN

1

2

3

6

AAA Server/Infrastructure

Service Equipment

SERVICE PROVIDER DOMAIN

AAA Server/Infrastructure

45

Figure 3-7: Roaming Case Push Sequence

3.2.3.2 Distributed Services

In this case, to provide a complete service, it may be needed the combination of several service
providers in order to achieve a successful service. An example could be a user requests a QoS
service but this one must be carried out by several ISPs and therefore should exist agreements
between participant entities.

The user’s request will be authenticated and authorized by the first organization or domain and
then it will be forwarded next organization and so on. The communication between user and
first organization could be different than between organizations. For example, between user and
first organization could use a Pull Sequence (see Figure 3-3) communication while between
organizations an Agent Sequence (see Figure 3-2).

Both Roaming case and Distributed Services can be combined. This schema is the most complex
(see an example in Figure 3-8Figure 3-8) and involves different contract and trust relationships
that may be set up in many different ways, depending on a variety of factors, especially the
business model.

New entities appear in this model, as for example AAA brokers that are needed to meet business
needs. These brokers enforce the relationship of trust between domains by offering services to
the rest of AAA infrastructure. For example, they would be able to route requests in order to
carry them from an AAA server to another one in a foreign domain.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 15 of 6868

AAA Server/Infrastructure

Service Equipment

User

Organization A

1

8

2 7

AAA Server/Infrastructure

Organization B

3

6

Service Equipment

5 4

Figure 3-8: Distributed Service example

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 16 of 6868

4. AAA PROTOCOLS

4.1 Introduction

In order to AAA servers can communicate each other, a protocol must be used. The model of
communication used is peer-to-peer; therefore a protocol which supports this feature is needed.
There are several more properties described in [RFC2989]. We can emphasize:

• must be capable of supporting millions of users and tens of thousands of simultaneous
requests

• support multi-domain environments

• support mutual authentication between the AAA client and server

• must allow communication to be secured

• must be extensible in order to define attributes that are specific to the service being
defined

• peer-to-peer security. It implies authentication and integrity protection at the object level
(which consists of one or more attributes or elements).

Following, we show three protocols (RADIUS, TACACS+, and DIAMETER) considered AAA
protocols though really only one of them, DIAMETER protocol, complies with the most of
requirements exposed in [RFC2989,RFC3169]. In any case, we summarize each one in order to
analyze which features allow to say DIAMETER is the best option for future deployed AAA
infrastructures.

4.2 RADIUS

The RADIUS protocol is widely used to provide AAA services for dial-up PPP [RFC1661] and
terminal server access. This protocol is used to carry authentication authorization and
configuration information between a Network Access Server and a shared AAA server
(RADIUS server). All information about users which can access to the network is stored in a
single database which allows RADIUS server authenticate verifying user name and password.
Furthermore, it is needed type of service requested by the user (i.e. PPP, telnet, SLIP
[RFC1055]). Following, we are going to summarize some interesting features of this protocol
though for more detail to see [RFC2865, DIAMFRWK] and to have a look [MOBYDICK].

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 17 of 6868

4.2.1 RADIUS features

• Client/Server Model: Network Access Server (NAS) works as a client of RADIUS. The
client takes charge of sending information provided by user to a specific RADIUS server
and this one is responsible for receiving, evaluating (it queries its user database) user
connection requests, authenticating the user and finally returning a response.
Furthermore, a RADIUS server could act as a proxy client to other RADIUS servers or
other types of authentication servers if server itself can not process a request and it must
forward to another AAA server.

• Client and server have a secret (hop by hop security model) shared key which allow them
to authenticate all transactions. Furthermore, passwords sent by user are also encrypted to
avoid attackers discover the value of this information.

• RADIUS provides authentication methods based on the RSA Message Digest Algorithm
MD5. The shared secret between client and server followed by a random number of 16
octet length are put through an MD5 hash to create a 16 octet value which is XORed with
the password entered by the user.

• RADIUS server can support a variety of methods to authenticate an user. When it has the
needed user information it can support PPP PAP or CHAP, UNIX login or whatever
authentication mechanisms.

• The transport layer uses UDP for strictly technical reasons. RADIUS does not require
detection of lost data. It supposed user is willing to wait several seconds for
authentication to complete. It is possible user is not willing several minutes for
authentication. In this case, it is preferred to use an alternate server allows user to gain
access than use reliable delivery of TCP several minutes later. On the other hand, the
stateless nature of RADIUS protocol simplifies the use of UDP and moreover UDP
simplifies the server implementation.

• RADIUS’ messages are based on AVPs (Attribute Value Pairs) with alignment to 32 bits.

Type (1byte) Length(1 byte) Value...

Figure 4-1: RADIUS AVP

• RADIUS packet is shown below (from [RFC2865]):

C o d e (1 b y te) Id e n t i f ie r (1 b y te) L e n g th (2 b y te s)

A u th e n t ic a to r

A t t r ib u te s …

Figure 4-2: RADIUS packet

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 18 of 6868

Where:
o Code. Establishes the type of RADIUS packet.
o Identifier. One octet value that allows the RADIUS client to match a RADIUS

response with the correct outstanding request.
o Length. It indicates the length of the packet including the Code, Identifier,

Length, Authenticator and Attribute fields.
o Authenticator. The Authenticator field is 16 octets. This value is used to

authenticate the reply from the RADIUS server, and is used in the password
hiding algorithm.

o Attributes. Where an arbitrary number of attribute fields are stored.

4.2.2 RADIUS drawbacks

Based on [DIAMFRWK], we can obtain some of them:

• Strict limitation of attribute data

This limitation is due to the protocol’s attribute header only reserves one byte for length
field. In order to support larger data, RADIUS allows data to be spanned across multiple
attributes but also allows multiple attributes of the same type within a message, so it is
difficult for a server or client to determine whether multiple identical attributes are fact
multiple independent attributes or an unique larger fragmented attribute.

• Strict limitation on concurrent pending messages

The RADIUS protocol states that the identifier field, found within the header, is used
to identify retransmissions. But its length is short, only a byte, so the number of requests
that can be pending at any given time is limited to 255.

• Inability to control flow to servers

Given the rather bursty nature of the RADIUS protocol, current servers have no way of
properly managing their receive buffers. Mainly it is due to RADIUS operates over UDP
and there is not any windowing support.

• End to end message acknowledgment

RADIUS protocol requires that a NAS retransmit a request until a response is received,
however it does not permit a RADIUS server to retransmit a response. On the other hand
RADIUS servers have to perform a database lookup to authenticate the user and such
operations could be lengthy in time. It would cause the NAS to assume that the request
was never received, and retransmit causing further congestion.

• Silent discarding of packets.

The RADIUS protocol states that messages that have errors or that do not contain the
expected information will be silently discarded. Due to NAS considers this server is
unreachable and sends its requests to other alternative servers that will discard requests
again. This process is repeated until NAS abandons. It produces an authentication process
delay.

• Inefficient use of RADIUS servers in proxy environments

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 19 of 6868

It is mainly due to NASes have no method of discovering if the lack of a response is due
to a failure on the local, downstream proxies o or home server. Furthermore, servers do
not retransmit request on behalf of the NAS. So, when primary home server become
unavailable, the local server does not retransmit to an alternate server in the home
network, but rather waits for the NAS to timeout and retransmit to the local alternate
server, requiring parallel links between servers.

• Hop-by-Hop security

In a RADIUS proxy network, RADIUS servers establish authentication with next peer in
the chain (next hop). However, it cannot secure messages between NAS and home server
(last hop in the chain) so fraudulent intermediate proxy server could modify information
sent by NAS to home server.

• Mandatory Shared Secret

It requires that a shared secret exits between two peers. So, even IPsec [RFC2401] is used
the shared secret would be still required.

4.2.3 RADIUS and IPv6

Reference [RFC3162] explains needed basic extensions (new attributes) in order to support IPv6
protocol in user requests by trying to access the network. Initially a NAS could not know
whether user will be using IPv4, IPv6 or both. Therefore IPv6 attributes may be sent along with
IPv4-related attributes within the same RADIUS message and that the NAS will decide which
attributes to use.

Exactly, there are six new attributes:
• NAS-IPv6-Address. It indicates the identifying IPv6 Address of the NAS which is

requesting authentication of the user. It must be unique within scope of the RADIUS
server.

• Framed-Interface-Id. This attribute indicates the IPv6 interface identifier to be
configured for the user.

• Framed-IPv6-Prefix. It indicates an IPv6 prefix (and corresponding route) to be
configured for the user.

• Login-IPv6-Host. It indicates the system with which to connect the user.
• Framed-IPv6-Route. It provides routing information to be configured for the user on the

NAS.
• Framed-IPv6-Pool. It contains the name of an assigned pool that should be used to

assign an IPv6 prefix for the user. If a NAS does not support multiple prefix pools, the
NAS will ignore this attribute.

Finally, we must clarify the difference between RADIUS over IPv6 and RADIUS and IPv6
support. When we are talking about RADIUS over IPv6, UDP (transport layer used) uses IPv6 as
IP protocol instead of IPv4. However, RADIUS and IPv6 could use this UDP over IPv6 apart
from new attributes above explained. Obviously, the combination UDP over IPv6 plus attributes
is more suitable but it could be possible RADIUS over IPv4 to transport RADIUS IPv6
attributes.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 20 of 6868

4.2.4 RADIUS implementations

Unfortunately, there doesn't seem to be an IPv6 RADIUS server available though a RADIUS
client over IPv6 protocol is [RADIUSCLIv6]. However, there are some free RADIUS protocol
implementations like Free-RADIUS [FREERADIUS] or Cistron [CISTRONRAD] over IPv4
protocol. Due to source code is available we have the chance to add IPv6 support (UDP over
IPv6) and include new attributes as [RFC3162] specifies.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 21 of 6868

4.3 TACACS+

The TACACS+ [RFCTACACS] protocol is the latest generation of TACACS. TACACS is a
simple UDP based access control protocol. Cisco enhanced (extended) TACACS several times,
and Cisco's implementation, based on the original TACACS, is referred to as XTACACS. The
next step was to implement TACACS+ that improved TACACS and XTACACS features.

4.3.1 TACACS+ features

The most important are:
• All traffic is encrypted between the NAS and the TACACS+ server.
• It allows for arbitrary length and content authentication exchanges which will allow any

authentication mechanism to be used with TACACS+ clients.
• It is extensible to provide site customization and future development features
• It uses TCP to ensure reliable delivery (port 49).
• The protocol allows TACACS+ client to request very fine grained access control and

allows the TACACS+ server to respond to each component of that request.
• It separates the functions of Authentication, Authorization and Accounting. It provides

for all three though an implementation or configuration is not required to employ all
three. It is as if each AAA function is managed by a different and independent module in
TACACS+ protocol.

• TACACS+’s messages are based on AVPs (Attribute Value Pairs).
• TACACS+ packet header:

Major
Version type (1byte) Flags(1 bytes)

session_id

Minor
Version seq_no(1 byte)

length

Figure 4-3: TACACS+ packet header

• All TACACS+ packets always begin with the following 12 byte header (always cleartext)
and describes the rest of the packet:

• The package has a field to indicate if type of packets is for Authentication, Authorization
or Accounting (type field); a sequence number (seq_no) of the current packet for the
current session; eight bit flags (flag field) to signal different configuration parameters
(for example whether encryption is used on the body packet); an identifier for this
TACACS+ session whose value do not change for the duration the session
(session_id). This value must be a cryptographically strong random number otherwise
it will compromise the protocol’s security. Finally there is a field that informs about
length packet body.

Note the body of TACACS+ may be encrypted (it is recommended). The encryption relies on a
shared secret key between client and server (TACACS+ protocol does not define a key
distribution method). To packet body is encrypted by XOR-ing it byte-wise with a pseudo
random pad and this one is created by concatenating consecutive MD5 hash operations applied
to session_id, key, version, seq_no, and previous MD5 hash results. The length of
concatenation result will be equal to data length.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 22 of 6868

4.3.2 TACACS+ body

There is a different body depending on required process (Authentication, Authorization or
Accounting) though there are several constant fields as user (username or user id that is
authenticated or being authenticated); port (ASCII description of port which user is connected);
user_msg (ASCII input form the user) or server_msg (to hold a message that is intended to be
presented to the user). However, data field in not used in all packets. For more information about
types of packets associated to a particular AAA process see [RFCTACACS].

4.3.3 TACACS+ implementations

This protocol is not very widespread, mainly because RADIUS protocol has been used as
alternative. In fact, TACACS+ is initially used by Cisco routers. However, these routers are also
able to use RADIUS protocol so TACACS+ are being discarded. On the other hand, neither
there is IPv6 support for this protocol nor any proposal to integrate IPv6 and TACACS+. Only
IPv4 implementations can be founded: a pair of examples in references [IMPLTAC+,
CISCOTAC+].

Other interesting information is Cisco is adding RADIUS – IPv6 support in its new operative
systems (IOS). Due to these reasons, this protocol should be discarded as suitable option as AAA
protocol to use in a possible Euro6IX’s AAA infrastructure.

4.4 DIAMETER

Over time the networks became more complex (i.e. roaming networks) and the Network Access
Servers (NAS) increased in complexity and density. Until now AAA protocols used ,as RADIUS
has shown many lacks in order to support this kind of more complex networks.

DIAMETER protocol has been designed for fixing the flaws in the RADIUS protocol. In fact,
the basic RADIUS model was retained but several improvements were included. However,
DIAMETER does not share a common Protocol Data Unit (PDU) with RADIUS, but they have
enough similarities to ease migration.

The basic concept behind DIAMETER is to provide a base protocol that can be extended in
order to support AAA requirements. But DIAMETER really consists of an architecture that is
made up a base protocol [DIAM-BASE] and a set of protocol extensions not defined on base
protocol such as CMS Security [CMS-SEC], Mobile-IP (v4 and v6) [DIAM-MIPv4,DIAM-
MIPv6], accounting [DIAM-ACCT], NASREQ [DIAM-NASREQ]. Furthermore a standardized
API [DIAM-API] has been defined in order to hide details of implementation of DIAMETER
protocol.

4.4.1 DIAMETER base protocol

The base protocol defines the basic PDU format, a few primitives and the basic security services
offered by the protocol. It operates over reliable SCTP protocol [RFC2960] which provides a
windowing scheme, which allows AAA servers to control flow of incoming packets. Even
though, it can operate over TCP.

The base protocol assumes a peer-to-peer communication model as opposed to a client-server
model. Next points summarize the most important issues of design:

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 23 of 6868

• Lightweight and simple to implement protocol.
• Large AVP space. It means an improvement over RADIUS protocol that is limited.
• An Attribute Value Pair (AVP) consists of in three parts: an Identifier, Length, and Data.

There is a unique identifier for each data object in order to be able to distinguish the data
contained.

• Efficient encoding of attributes, similar to RADIUS.
• Support for vendor specific AVPs and Commands. It offers more flexibility and

extensibility for future AAA-aware applications.
• Support for large number of simultaneous pending requests.
• Reliability provided by underlying SCTP (or TCP).
• Ability to quickly detect unreachable peers.
• No silent messages.
• Hop-by-hop security although there is an extension called CMS Security that offers

integrity and confidentiality at the AVP level (it allows peer-to-peer security)
• Session-oriented protocol. One session per authentication/authorization flow.
• Relay/Proxy support. DIAMETER protocol was designed from the beginning to support

inter-server communication so each node in the network is responsible for its own
retransmissions and the protocol allows each node to know whether a peer is reachable.
This allows for a flexible network, efficient retransmission schemas and solves RADIUS
problems associated to proxy servers [DIAMFRWK]. In this way, DIAMETER defines
new types of agent:

o Relay agent or relay: They are in charge of forwarding requests and responses
based on routing-related AVPs and domain routing table entries. It really is an
AAA-router.

o Proxy agent or proxy: Apart from forwarding requests and responses, proxies
take decision based on policies relating to resource usage and provisioning. So,
they could modify messages to implement policy enforcement.

• Redirect support. DIAMETER protocol includes the concept of an entity called redirect
agent. Redirect agents send information (after a previous request) about how to directly
reach an AAA server in a requested domain. These agents are deployed in order to reduce
the configuration information (to reach different domains) that would otherwise be
necessary on all servers owned by members of a roaming consortium.

4.4.2 DIAMETER extensions

The most important extensions defined are:

4.4.2.1 CMS Security

The CMS Security extension [CMS-SEC] provides strong authentication of selective AVPs. This
allows which authenticated AVPs cannot be modified by malicious proxy servers (if they are
used) and offers a secure peer-to-peer AVP communication.

 It is reached by allowing the Cryptographic Message Syntax (CMS) [RFC2630] S/MIME to be
encapsulated within a DIAMETER AVP. It allows confidentiality, authentication, besides
carrying certificates and certificate revocation lists (CRLs).

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 24 of 6868

4.4.2.2 Mobile-IP Extension

Mobile-IP Working Group has defined the interaction between Mobile-IP and AAA in order to
provide:

• Better scaling of security associations (Key distribution between participating entities in
Mobile-IP protocol).

• Mobility across administrative domain boundaries.
• Dynamic home agent assignment.

So, these extension allows provide the ability for a DIAMETER server to authenticate, authorize
and account a Mobile Node roaming between different network domains. Furthermore, it allows
a key distribution through DIAMETER servers between Mobile Nodes and their Home Agent to
establish security associations between them and authenticate for example Binding Updates and
Binding Acknowledgments.

Specifically, extensions for Mobile IPv6 have also been proposed in [DIAM-MIPv6,AAA-
MIPv6]

4.4.2.3 NASREQ

The NASREQ extension provides authentication and authorization for dial-in PPP users,
terminal server access and tunneling applications. These extensions are used to replace the
functionality of RADIUS with an alternative proposal. In fact, this extension makes use of the
attributes defined in the RADIUS protocol to carry the data objects. This allows easy migration
of existing RADIUS servers to DIAMETER.

4.4.2.4 Accounting

The Accounting extension provides usage collection to both the Mobile-IP and the NASREQ
extensions. To do this, it defines a set of accounting AVPs that are used by all services though
each extension defines their own service specific accounting AVPs.

This extension can be combined with CMS Security extension in order to secure and authenticate
accounting information for non-repudiation purposes. Even, this information may be signed by
several participating parties with business agreements in order to show they are agreed

4.4.3 DIAMETER implementations

Currently, there are not many alternative DIAMETER implementations. Only one is available
for downloading and it has been developed by SUNTM Microsystems [SUN-IMPL] though
source code is not available.

On the other hand, a work group has been created in source forge [OPDIAM-SERV] in order to
develop open-source software for the DIAMETER protocol. Another group [OPDIAM-TOSH]
(led by ToshibaTM) pools its efforts to promote this initiative. In fact, both groups have formed
an unique group. We must say this project is just started so only support libraries have been
released but not a first DIAMETER implementation.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 25 of 6868

On the other hand, some companies have released a DIAMETER implementation, but it is not
free cost and the source code is not available so this option is not suitable in order to investigate
and develop.

Available implementation is SUN’s one though it implements DIAMETER base protocol (draft
version -08) and DIAMETER API (draft version -02) old versions. In any case, it is a good
approximation to know and test how DIAMETER protocol and API works. Furthermore, thank
to DIAMETER API implementation new extensions to base protocol can be made (for example
Mobile IPv6). This implementation has been tested and its installation and configuration is
summarized in chapter 10.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 26 of 6868

5. MOBILE IPV6 AND AAA

5.1 Introduction

As we have commented on the introduction of this document, we are mainly interested to
analyze how roaming can be supported in Euro6IX network by using Mobile IPv6 and AAA
framework. This topic is really complex and wide, so in this chapter, we are going to focus on
the initial problem that must be solved: user authentication and network access control.
Authorization and Accounting issues will be analyzed and expanded on future work. On the
other hand, we are also going to explain how thanks to a deployed AAA infrastructure, Mobile
IPv6 features can be supported with alternatives solutions and even improved.

There are several reasons why we consider this integration has a vital importance in future
networks under the control of operators, specifically, Euro6IX network:

• The mobile networks are more and more used (i.e. mobile telephony networks).
• Next generations mobile telephony networks (UMTS) [3GPP-25.430] are thought to use

IPv6 protocol because it offers very interesting features for these ones. In order to support
mobility, Mobile IPv6 [3GPP-MIPv6] would be used.

• In general, IPv6 networks that support mobility can offer more interesting services and
give more added values to the network. So this chance must be taken in account inside
Euro6IX project.

• On the other hand, Mobile IPv6 is a protocol that is able to support mobility between
IPv6 networks but it does not specify anything about authorization or accounting.
Furthermore, the concept user authentication is not directly supported either. Really,
Mobile IPv6 defines a way to authenticate Binding Updates and Binding
Acknowledgment between Mobile Node and Home Agent and Mobile Node and
Correspondent Node but it does not introduce concept of user as an entity which has a
contractual relation with network operator.

• Mobile IPv6 protocol does not consider multi-domain networks. Understanding domain
as an entity which has its own rules and policies and which could have business
agreements with other domains. Mobile IPv6 allows the chance of mobile nodes can
move between networks and avoid other nodes have to be aware the actual position of the
mobile node. However, types of services can be used by a mobile node which accesses to
new different domain; or authentication of a particular user who has a business relation
with a particular domain (operator) and, in his turn, this one has a business relation with
visited domain (operator agreements); or how information about accounting can be
obtained and processed are issues that are not managed by Mobile IPv6. Definitively,
roaming between networks is not supported. In fact, apart from roaming implies
movements made by a node between networks of different domains, a service level and
business agreements are also established between operators. Mobile IPv6 capable nodes
can do movements between networks but agreements must be supported by AAA
infrastructure. Therefore, integrating both elements roaming mobile networks will have a
suitable support. However, it is needed include AAA functionalities into Mobile IPv6
protocol. We mean we can consider Mobile IPv6 as AAA services-aware protocol.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 27 of 6868

• The deployment of an AAA infrastructure (in Euro6IX network) not only can give
support to Mobile IPv6 but other services can be supported as dial-in access (PPP
connections) or SIP [SIP-AAA] communications that could need AAA services.

Following, we are going to analyze and compile information about proposal related with a
suitable AAA infrastructure for Mobile IPv6 which allows us to obtain ideas to solve problem of
network control access.

5.2 AAA for Mobile IPv6 network access

If we have a look section 3.2 several cases and architectures are summarized. The architecture
typically used by Mobile–IP proposal (both IPv4 and IPv6) is the Roaming – way 2(Pull
Sequence) where the user (Mobile Node) sends its request (to access to the network) to the
Service Provider’s Service Equipment (Service Provider‘s access router system). The
authentication information included in this request must be forwarded to User Home’s AAA
infrastructure to be evaluated. If authentication process is successful Service Provider’s Service
Equipment must allow traffic from/to this MN. Now, MN can send a Binding Update (BU) to its
Home Agent and receive the Binding Acknowledgement (BA). It is also possible Binding
Update packet could be encapsulated in user’s request, the response (BA) would also travel
through AAA infrastructure until the Mobile Node. Therefore, the path of initial BU-BA
interchange (in order to register the new MN’s position) is supposed trustworthy. In this case, the
used architecture is a typical case of Distributed Service (see Figure 3-8Figure 3-8).

A first interesting proposal about AAA and Mobile IPv6 can be seen in [AAAIPV6] though it
really gives an general overview of using AAA capabilities for IPv6 Network Access. Following,
we are going to summarize and extract some ideas about this document.

The document shows a specific service: IPv6 network access requested by IPv6 client. Several
network access protocols used by client are considered: Stateless Address Autoconfiguration
[RFC2462] Mobile IPv6 and DHCPv6[D-DHCPv6](an example of a stateful auto-
configuration). We focus on Mobile IPv6 access.

The proposed general infrastructure with next components can be seen in next figure:

Client

Controlled Uncontrolled

Client System

Packet
Filter

Attendant

AAAL AAAH

Router System

Service Equipment
(e.g Home Agent in Mobile IPv6)

AAA
infrastructure

Figure 5-1: AAA model for IPv6 network access

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 28 of 6868

Where we can see next entities:
• Client system. It is the node requesting access to the network (Mobile Node)
• Router System. It is the Service Provider’s Service Equipment and it is the node that

provides network access (the service) to the client. This system consists of several
functional blocks as attendant and Packet Filter (both components could be integrated in
the same device)

• Attendant. This entity extracts identification and authorization data sent by the client and
forwards them to AAAL for verification.

• Packet Filter. It is the entity responsible for disallowing unauthorized packet traffic. This
part can be controlled depending on a policy or taken decision about an user requesting
network access. So when a client is authorized, the access control list of the filter is
updated with client’s IPv6 address in order to allow this client to send traffic through the
network.

• Controlled and Uncontrolled parts. If AAA is enabled in a specific interface all transiting
packets are forced to controlled access. If a packet does not pass access control is
dropped but packets that contains AAA message are addressed to the attendant in the
uncontrolled access part.

• AAAL. AAA server in the Service Provider domain (foreign network) that mediates local
access to the AAA infrastructure.

• AAAH. AAA server in the Home Domain which is able to authenticate/authorize each
one of its clients.

5.2.1 Access protocol description

Initially, the client solicits access to network through protocol as DHCPv6 or Mobile IPv6. This
initial request must be contain authentication/authorization information (AAA credentials) that
must be verified by AAA server in Home Domain. This information is firstly processed by
attendant part in the Router System and forward to AAAL. If AAAL cannot evaluate forwarded
information (the user does not belong to this domain) it must send this information to AAAH in
User Home Domain which has the knowledge to verify AAA credentials.

The next schema shows complete process:

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 29 of 6868

Uncontrolled Part

Attendant

Router System

Packet Filtering

Controlled Part

LC

AAA request : LC,RPI,ID,CR,BU*

AAAL

AAA Response: stat,RPI,KD,Back*

Update config

User

AAAH

Authorized packet Authorized packet

Unauthorized packet

ACR

ACA

ACR

ACA

AAA protocolAccess Protocol (f.e. PANA)

LC : Local AAA Challenge
ID : Client Identifier
CR : AAA credential
KD : Key distribution
ACR : AAA Client Request (using an AAA protocol)
ACA : AAA Client Answer (using an AAA protocol)
Back*: Binding Acknowledgment (optional)
BU* : Binding Update (optional)

Home Agent

Mobile IPv6 : Binding Update is
contained in AAA request.

BUBAck

IPv6
Network

Figure 5-2: Access process overview

This process can be initiated by either Client or attendant. When the process starts, attendant
sends a local challenge to the client. This challenge has two purposes:

• It is used to generate an AAA credential which securely binds the challenge, the client
identifier (i.e. a NAI [RFC2486]) and any reply protection indicator used between the
client and AAAH.

• It allows attendant to ensure the freshness of an AAA request message from the client
and allows to offer a replay protection method.

After clients generated the credential, it sends an AAA request message containing its credential
and additional information that must be verified. Attendant checks local challenge in request is
valid, extracts AAA related information, creates a new message named AAA Client Request
(ACR) and sends them to AAAL server using an AAA protocol. If this message cannot be
processed by AAAL, this forwards it to AAAH using an AAA protocol again. AAAH verifies
the credential and sends back the result in a message labelled AAA Client Answer (ACA). AAAL
forwards ACA to the attendant and finally, attendant extracts the relevant data from ACA and
forwards them to the client.

Note this interchange of messages allows AAAH does a key distribution between participant
entities (AAAL, attendant, client) which allow defining security associations between them
(client-attendant, client-AAAL). Security associations between AAAL and attendant (they
belong to same domain) and AAAL-AAAH (there is a business agreement) are supposed.

5.2.2 Mobile IPv6 Instantiation

The schema is basically the same: if Mobile Node moves to another network, between it and
attendant there must be a communication in order to interchange AAA messages and the local
challenge. But first problem is which protocol is used to transport these messages between them.
It is not clearly defined though exits several proposals. For example, ICMPv6 packages may be
used to carry AAA messages though new options should be defined.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 30 of 6868

The proposal more interesting is the protocol defined by PANA (Protocol for carrying
Authentication for Network Access) Work-Group [PANA-WG]. PANA will be described in next
section 5.2.3. Even Router Discovery protocol could be used [SNARD, SNARD-PRE] though
initially proposal is more oriented to authentication. However, problems would not exit in order
to include authorization information in router discovery protocol by adding new options in
packets of the protocol. There is also hybrid proposal [EAP-SIM6] where Router Discovery is
used to start the protocol but the rest of AAA messages are carried using new ICMPv6 messages.

Second place, if Binding Update (BU) is carried in AAA request message (later BU will also be
included in ACR message) it must be delivered to Home Agent by AAAH. In this case, Home
Agent could be considered as User Home Domain’s Service Equipment and BU would be
request to be executed. Binding Acknowledgment (BA) is sent to AAAH by Home Agent (HA)
and it is encapsulated in ACA message. After, attendant extracts BA from ACA and delivers to MN.

Note in Mobile IPv6 without AAA support, HA directly sends BA to MN. Now there must be a
forced hop in path between MN and HA: the AAAH server that processes the request.

Third place, AAAH can also execute a key distribution process between MN and HA to establish
a security association between them. Finally, AAAH offers an alternative Dynamic Home
Address assignment [D-MIPv6-19] because it could allocate a specific HA if MN has not one,
for example depending on domain’s policy or other reasons (i.e. load balancing between home
agents).

The complete general framework is depicted by Figure 5-1Figure 5-1.

Note that about AAA for Mobile IPv6 there is more specific proposal [DIAM-MIPv6, AAA-
MIPv6] based on DIAMETER protocol. Both drafts give a more specific vision about Mobile
IPv6 and AAA integration and they can be first step in order to design a suitable solution for this
issue. Both drafts will be deeply analyzed in future work.

5.2.3 PANA

PANA stands for Protocol for carrying Authentication for Network Access and it is being
defined by an IETF Working Group: PANA WG [PANA-WG]. The goal of this group is to
define a protocol that allows clients to authenticate themselves to the access network using IP
protocols. Such a protocol would allow a client to interact with a site's back-end AAA
infrastructure to gain access without needing to understand the particular AAA infrastructure
protocols that are in use at the site. It would also allow such interactions to take place without a
link-layer specific mechanism. So, it would be applicable to both multi-access and point-to-point
links. It would provide support for various authentication methods, dynamic service provider
selection, and roaming clients.

This protocol tries to complete the lack a clear solution or alternative to carry authentication
information between client and attendant. PANA will neither define any new authentication
protocol nor define key distribution, key agreement nor key derivation protocols. In order to
reach its objectives, PANA is only intended to carry EAP [RFC2284] information. To meet all
the need for all of PANA intended usages, EAP may need to be extended, though such
extensions are outside the scope of the PANA WG.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 31 of 6868

As an example, Mobile IP Working Group has already defined such a carrier for Mobile IPv4
[RFC3344]. Mobile IPv4 registration request message is used as the carrier for authentication
extensions (MN-FA [RFC2002], or MN-AAA [RFC3012]) to receive forwarding service from
the foreign agents. In that sense, designing the equivalent of Mobile IPv4 registration request
messages for general network access is the goal of PANA. Another example of protocol which is
near to this concept is shown section 5.2.6 because it is used to carry authentication information
between a client and an attendant using IPv4 or IPv6 protocol.

Currently, a specific PANA protocol is not still defined only several usage scenarios and
problem space for PANA [PANA-USGSCN]; requirements and terminology [PANA-REQTER]
and Threat Analysis and security requirements [PANA-THREAT].

5.2.3.1 PANA model

 Figure 5-3Figure 5-3 shows four examples of most common model proposed by PANA:

PaC
(D1) EP

EPPaC
(D2)

AR/PAA

AAA infrastructure

PAA co-located with AR but separated from EP

PaC
(D1) EP/PAA

AAA infrastructureEP/PAA

PAA co-located with EP but separated from AR

PaC
(D2)

AR

PaC
(D1)

PaC
(D2) AAA infrastructure

PAA co-located with EP and AR

AR/PAA/EP

AR/PAA/EP

PaC
(D1)

PaC
(D2) AAA infrastructure

PAA separated from EP and AR

EP

EP

PaC
(D3) EP

PAA

DX: Device number X
AR: Access Router
PAA: PANA Authentication Agent
PaC: PANA Client

EP: Enforcement Point

Figure 5-3: Examples of PANA models

As we can see PANA is intended to be integrated with AAA architecture. PANA entities are:

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 32 of 6868

• PANA Authentication Agent (PAA). The entity whose responsibility is to authenticate
the credentials provided by a PANA client and to grant network access service to the
device associated with the client and identified by a Device Identifier (DI). Note that
PANA considers the concept of device and not a user as entity that wants to obtain access
network. In fact, a same user could try to access from several devices with different DIs
but a unique User Identifier; or even several users could use the same device. However,
PANA [PANA-REQTER] only grants network access service to the device identified by
the DI, rather than granting separate access to multiple simultaneous users of the device.
Once the network access is granted to the device, the methods used by the device on
arbitrating which one of its users can access the network is outside the scope of PANA.
Under our point of view it also is interesting has a User Identifier in order to support a
user by accessing from any device so the mechanism to authenticate a user is independent
of particular device.

• PANA Client (PaC): The entity wishing to obtain network access from a PANA
authentication agent within a network. A PANA client is associated with a network
device and a set of credentials to prove its identity. An example of PANA Client could be
a node supporting Mobile IPv6 protocol. However, before MIPv6 is executed, a PANA
transaction should be done and even both functionalities could be integrated in order to
optimize access network.

• Enforcement point (EP): This entity enforces a policy or decision taken by PAA about a
particular device identified by DI (i.e. filtering packets sent by this device).

• Access Router (AR): A first-hop router from a PaC device.

5.2.4 AAA and PANA

In addition to carrying authentication information, PANA will also provide only a binary
authorization to indicate whether a client is allowed to access full IP services on the network.
Providing finer granularity authorization, such as negotiating QoS parameters, authorizing
individual services (http,ftp,ssh…), individual users sharing the same device, etc. is outside the
scope of PANA.

Even providing access control functionality in the network is outside the scope of PANA. We
mean PANA does not play any explicit role in performing access control process except that it
provides a hook to access control mechanisms. Therefore other protocols must be used in order
to carry needed parameters to perform the whole access control process (which can involve
setting access control lists on the EP) between PAA and EP when they are not placed together.
However, information carried by PANA protocol could be enough for a back-end AAA
infrastructure could start an access control process.

Finally, carrying accounting data is also outside the scope of PANA.

5.2.5 EAP

EAP [RFC2284] stands for Extensible Authentication Protocol and it is a general protocol for
authentication which supports multiple authentication mechanisms. EAP is used to select a
specific authentication mechanism, after an authenticator (i.e. an attendant) requests more
information about specific authentication method to be used

Until now, EAP has been implemented with host and routers that connect via switched circuits or
dial-up lines using PPP and wireless access points over IEEE 802 local area networks (IEEE
802.1X [IEEE802])

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 33 of 6868

The protocol is based in the interchange EAP Request and Response packets between client and
authenticator.

The format has next fields:
• A code field identifies one of four EAP packages initially defined (Request, Response,

Success, Failure)
• An identifier field is intended to match Responses with Request.
• A length field is two octets and indicates the length of the EAP packet including the

code, identifier and length Field.

Finally, the data field whose format is determined by the code field. For example if the package
is a request/response two new fields are included: Type (it indicates the type of Request or
Response: e.g. Nak, Notification, Identity, MD5-challenge) and Type-Data which
contains associated information with Request or Response.

However new EAP packages and Type field can be defined in order to support the needs of
alternative applications (i.e. to transport authentication information for Mobile IPv6).

General Protocol

Firstly, authenticator (normally) sends an EAP-Request packet in order to query the identity of
the peer (Identity request). The peer sends an EAP-Response packet that has information to
authenticate it or to start the authentication process. For example, peer could specify an
authentication method (Type field value) in this response. If the desired authentication is
unacceptable a Nak packet can be sent.

If the completion of an authentication method is successful the authenticator sends a Success
packet to the peer. On the contrary, if authenticator cannot authenticate the peer then Failure
packet must be sent.

An example of EAP use and new definition of EAP packets can be seen in [EAP-SIM6].

5.2.6 An example: Secure Network Access Using Router Discovery (SNARD)

This proposal [SNARD] is really interesting because it uses Router Discovery protocol as a
carrier for AAA exchanges (and key distribution). Furthermore, this protocol is the first step a
client should take to have off-link connectivity. So, piggybacking the authentication of the client
and the router to this message saves extra protocol signalling. These savings are critical for
mobile and wireless networks because the lost of connectivity will be lower.

Following, the protocol is summarized:

1. A client sends a router solicitation claims for authentication/authorization. This message
is multicast and all access router in this link listen it. The authentication/authorization
information is carried in the form of extensions to the standard to the router solicitation
packet thought in draft does not defined a specific format for these extensions. Some
ideas can be extracted from [EAP-SIM6] where EAP (Extensible Authentication Option)
(see section 5.2.5) is used to carry authentication data. Components of this new router
solicitation are :

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 34 of 6868

o Standard router solicitation message as defined [RFC2461]
o A new extension to carry client’s identifier (for example a NAI).
o Another new extension that carries authentication information is calculated by the

client using the security association between the clients its AAAH (it is initially
supposed). This information can only be verified by AAAH initially.

2. Access Router extracts AAA information from router and forward AAA infrastructure as
we comment in section 5.2.1

3. The response is sent to client through an unicast extended router advertisement. New
extensions are defined:

o A new extension that carries the authentication token for the access router used to
define a Security Association access router-client.

o Another new extension that carries the authentication token for AAAL used to
define a Security Association between AAAL server - client.

o Another new extension which is the authentication extension computed using the
new established security association between the access router and the client, so
client can verify the access router’s authenticity and definitively, authenticity of
the network. So a mutual authentication process is established.

Another interesting idea is extracted from re-authentication process. The idea is that after the
initial process access router system could maintain the state of security association between
recent authenticated client and itself and therefore if it is needed to re-authenticate the process
will only be carried out between client and access router and other entities (AAAL, AAAH) will
not be needed. This considerably improves the performance of re-authentication. This idea
coincides with our perspective exposed in section 3.2.1.

After all these steps, Mobile Node would be authenticated and it should send a BU to its home
agent showing its new position. This BU and the BAck must be authenticated [D-MIPv6-19]. It
is possible thanks to Security Association between Home Agent and Mobile Node. As we have
firstly seen in section 5.2.2, BU/BAck could be piggybacked in AAA request messages during
authentication process. In this case a new extension could be defined inside Router Solicitations
to include BU and Router Advertisement to include BAck packets.

5.3 Authentication for Mobile IPv6

There is an important opened issue because until now only security association has been defined
between MN-HA, MN-AAAL, MN-attendant, MN-AAAH (some of them thanks to key
distribution made by AAAH). The question is what happens with the security associations which
must be established between Correspondent Node (CN) and Mobile Node (MN) in order to
authenticate BU and Backs interchanged by them.

There are several references about this issue [AUTH-MIP, AUTH-PBK, AUTH-DH, ROE-MIP].
The document [AUTH-MIP] includes some ideas extracted from [AUTH-PBK, AUTH-DH] and
improves some deficiencies found.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 35 of 6868

The method proposed by [AUTH-MIP] is based on an authenticated Diffie-Hellman key
exchange between MN and CN in order to get a shared key. Furthermore, it assumes that both
MN and CN share security associations with two AAA servers, AAA-MN and AAA-CN
respectively. We mean, AAA-MN has already authenticated to MN and AAA-CN has already
authenticated to CN (note MN and CN could be in foreign domains). The process can be carried
out if a security associations between AAA-MN and AAA-CN or at least, there is a trust chain
between both AAA servers.

After MN and CN have the shared key an initialization phase is completed. To Authenticate
Binding Updates only a keyed cryptographic hash function (e.g. HMAC [RFC2104]) must be
executed on BU by using the shared key. However, asymmetric cryptographic is initially used by
MN and CN that both could have low computation capabilities.

Note the protocol exposed avoids problems associated with Diffie-Hellman protocol (Man-in-
the-middle attacks) by using trust chain offered by AAA infrastructure.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 36 of 6868

6. EURO6IX AND AAA

This chapter is focused on exposing several initial ideas about how an AAA infrastructure could
be deployed in Euro6IX network. Our intention is that these ideas serve as beginning of
discussion in order to define a suitable AAA infrastructure between different partners which
allows providing AAA services to different customers in Euro6IX network. An example about
what benefits can be obtained including AAA services have been seen in section 5.1: integration
between Mobile IPv6 and AAA allow supporting roaming in mobile networks.

The first question is which AAA services should be provided by IXs and which ISPs’ networks
should. The second question is after these services are deployed, how they should interact
between them. Following, our initial vision is explained through an example shown by the
Figure 6-1Figure 6-1. This figure depicts the Internal Architecture for the IX Model B.

L2 standard IXL2 standard IX

RR
RR

IPv6 Exchanger

L3 ServicesL3 Services Carrier’s IPv6
National Backbone

Standard CustomersLarge Customers

Telcos.
Standard Peering

Service IX L2

RR

Euro6IX
IPv6

BackboneTelco1Telco1

Telco2Telco2

RR RRRR
SW1

SW2

R3
R4

R2
R1

Rb
Rc

Ra

Rd

RRRR

Other IPv6
Networks

R1
R2

IPv6 Route ServerIPv6 Route Server

AAA server

Relay Agent

Proxy Agent

AAA serverAAA serverAAA server

Proxy Agent

Relay Agent

Figure 6-1: Euro6IX and AAA: Model B example.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 37 of 6868

As we can see several types of customers or ISPs could be connected to an IX. Then, we can say
these ISPs belong to macro-domain defined by IX and they are under the control of it. In his
turn, each ISP would define a network domain and several sub-domains could also be created
inside and so on. Each ISP should be in charge of managing its own users and AAA servers
which have the knowledge about each one of them should be placed on internal ISP network.
However, IX could provide AAA servers in order to manage users belonged by another ISP (for
example a small one). So IX would offer network access services through AAA servers placed
on it. Furthermore, IX could have its own AAA servers in order to manage its own end users.

On the other hand, some AAA servers could be placed in IXs network backbone in order to
control users (i.e. administrators) who are in charge of managing IXs backbone. If each IX is
considered as independent domain should at least exit an AAA server for each IX that would
control that IX’s administrators.

However, another kind of AAA servers could be placed in each IX in order to provide some
services to ISP’s deployed AAA infrastructures. They are basically two:

• Relay/Proxy service: It is carried out by an AAA relay agent or an AAA proxy agent.
These agents are in charge of forwarding responses and requests provided by ISP’s AAA
infrastructure which needs to communicate with another ISP’s AAA infrastructure in
order to support user-roaming. If policy enforcement is needed in an IX (i.e. it could
happen a particular service cannot be used by a ISP) AAA proxy agents should be
deployed instead of relay agents.

• Redirect service: It is carried out by an AAA redirect agent. This agent would be used by
ISP’s AAA infrastructure in order to get information how directly reach a particular AAA
server in another ISP. We mean this server has routing information about different AAA
infrastructures. For example, all ISPs that depend on a particular IX could send request to
this IX’s AAA redirect agent about how reach AAA infrastructure of a particular domain.

Note we have analyzed several AAA protocols, and we envisage DIAMETER should be
considered the best option to communicate all domains’ AAA infrastructures.

Finally, users need to interact with domain’s AAA infrastructure where they are trying to access.
Therefore, several attendants should be deployed in each ISP’s sub-domains which allow users
interact with back-end AAA infrastructure.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 38 of 6868

7. IPV6 AND IPV4 CONSIDERATIONS

This chapter makes a brief comparison of state-of-art of AAA architecture in IPv4 and IPv6.
This comparison is based in two aspects: design-level and implementation-level.

At design-level, in general, drafts about AAA in IPv4 are more mature (more revisions have
been made). For example, DIAMETER extensions for Mobile IPv4 are version 13 [DIAM-
MIPv4] meanwhile versions 02 for Mobile IPv6 [DIAM-MIPv6]. Even a protocol to carry out
AAA information in Mobile IPv4 extensions has been defined in a RFC [RFC3012].
Furthermore, in mobility we must take into account Mobile IPv4 proposal is already a RFC
meanwhile Mobile IPv6 proposal is a draft that changes periodically. However, some proposals
about AAA are valid for IPv4 and IPv6 due to they are independent of IP protocol, for example
PANA protocol or DIAMETER base protocol, whose design is intended to operate over SCTP or
TCP and therefore, it does not depend on IP used protocol.

At implementation-level, implementations are very immature for both IP protocols though, for
example an SUN DIAMETER base protocol and API is implemented under Linux and Solaris
and IPv6 support for Linux does not work but IPv4 support does. Under Solaris both IP protocol
are supported. However, we do not consider this relevant issue because this protocol is old and
based on old designs. The recent groups created in order to develop a free DIAMETER base
protocol [OPDIAM-SERV, OPDIAM-TOSH] are considering only IPv4 at the moment, even
though IPv6 will be considered subsequently.

With respect to network access protocol, the situation is similar, even though for example
SNARD protocol [SNARD] has been implemented for IPv6 protocol under Linux [SNARD-
PRE].

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 39 of 6868

8. CONCLUSIONS

During this document we have introduced some basic concepts about Authentication,
Authorization and Accounting (AAA) architecture. We have described several typical
infrastructures and some important AAA needed protocols to communicate AAA entities
between each other.

After this initial phase, we have focused on analyzing integration between Mobile IPv6 and
AAA in order to support roaming. Due to this problem is complex and quite wide, we have
considered appropriate to focus on the first problem that must be solved: user authentication and
access control to the network. To do this, we have introduced some protocols to carry
authentication and access control information in order to AAA infrastructure can verify both.
Furthermore, we have described how this information is processed and carried by AAA
infrastructure.

On the other hand, we have also summarized how some Mobile IPv6 features can be supported
by a deployed AAA infrastructure. Especially, Mobile IPv6 security though this issue still need a
deep analysis.

Taking in account one of the final objectives is support roaming in Euro6IX network, from this
initial analysis some conclusions can be extracted:

About deployment of an AAA infrastructure:
• Between current AAA protocols, DIAMETER is the option which is being chosen in

order to support AAA infrastructures.
• However, DIAMETER implementations are immature. Therefore, if AAA infrastructure

must be deployed, DIAMETER implementation should be further deployed.
• Apart from DIAMETER base implementation, DIAMETER API and several extensions

should be implemented (i.e. CMS Security extension is really interesting in order to
support peer-to-peer security between AAA entities).

About integration of Mobile IPv6 and AAA:
• DIAMETER Mobile IPv6 extension must be implemented as new DIAMETER extension
• To manage Mobile Node access control a new entity must be created: attendant (or PAA

if PANA protocol is implemented). It implies to develop its complete functionality.
• Mobile IPv6 protocol must be modified to support AAA messages. These modifications

must still be implemented and they depend on used access protocol and a specific chosen
design.

• Mobile Node must implements an access protocol in order to carry authentication
information to the network. However, there are only initial designs and just some early
lab deployments [SNARD-PRE]. In fact, PANA is the unique standard option, but a
specific design does not exit, though other alternatives can be useful as reference
[SNARD].

• If key distribution is done by AAA infrastructure, a schema of key distribution must be
chosen (this issue must be deeply analyzed in future work).

• There are not many alternatives to integrate Mobile IPv6 security in conjunction with an
AAA infrastructure.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 40 of 6868

About Euro6IX network and AAA

From conclusions stated above, we can conclude that, initially, it is possible at design level to
deploy a AAA infrastructure in IXs and ISPs but it is more difficult at implementation level due
to lack of maturity of some implementations (i.e. DIAMETER) or some protocols are in a early
design phase (i.e. PANA)

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 41 of 6868

9. FUTURE WORK

As we have already commented our initial interest is mainly focused on trying to solve user
authentication and access control problematic based on an underlying AAA infrastructure. Until
now, we have summarized some alternatives to do this and we have obtained a basic overview
about which elements are needed and how it could be included in Mobile IPv6.

During next year, our intentions are aimed to:
• Design a more precise AAA infrastructure for each IX in Euro6IX network.
• Design our own solution which allows users using Mobile IPv6 to be authenticated by an

AAA infrastructure besides providing network access control. This initial design must be
based on several gathered ideas extracted of this deliverable and future research about
these topics. Trying to solve this problem can need to solve other problems as key
distribution process between different AAA entities and Mobile IPv6 nodes in order o
establish security associations. In fact, we will also deal with this issue. Due to one of
the problem in Mobile IPv6 security is key distribution in order to authenticate Binding
Updates and Binding Acknowledgements, designs should also aim to offer an alternative
solution.

• To analyze two aspects have been left apart in this initial research: Authorization and
Accounting.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 42 of 6868

10. SUN DIAMETER IMPLEMENTATION

The implementation works under Linux and Solaris 8 (and 9) S.O. but we have found a problem
in Linux version: it does not work with IPv6 support. So this alternative has been discarded and
Solaris 8 version has been tested. We must also comment the related documentation of this
implementation is really poor. After several e-mails interchanged with the developers we have
composed this document.

10.1 Installation

The first step is to download and install libxml2-2.4.10-SPARC-solaris8-local.pkg :

pkgadd –d libxml2-2.4.10-SPARC-solaris8-local.pkg

From [SUN-IMPL] we must download SUNWaaal-0.7.1.tgz and install it:

bash-2.05# cp SUNWaaal-0.7.1.tgz /var/spool/pkg
bash-2.05# gunzip SUNWaaal-0.7.1.tgz
bash-2.05# tar xvf SUNWaaal-0.7.1.tar
bash-2.05# pkgadd

This package contains DIAMETER server (a daemon), several support libraries, API
implementation and several configuration files.

Next step is to install examples files which implement Sun Ping Extensions for DIAMETER
[SUN-PING] in order to test the implementation. This application is a very useful
troubleshooting tool, allowing a DIAMETER node to determine whether reachability to a
domain is possible. This example is included in the package called aaaapi-example-
1.0.1.tar.gz and we must install it (for example in /usr/src/diameter/):

bash-2.05# gunzip aaaapi-example-1.0.1.tar.gz
bash-2.05# tar xvf aaaapi-example-1.0.1.tar

This package contains several files:
• Makefile.solaris. This file must be modified in order to compile the example. Next

both lines must be changed :
……
INC=-I$(ROOT)/usr/include
……
CFLAGS=-g -Wall -fpic $(INC) -D_REENTRANT -D_POSIX_PTHREAD_SEMANTICS -
D_GNU_SOURCE

 Now, to compile the example we must execute:

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 43 of 6868

bash-2.05#/usr/ccs/bin/make clean
bash-2.05#/usr/ccs/bin/make –f Makefile.solaris

• exampleServer.c. File used by DIAMETER API in order to implement server-side of
Sun Ping Extension. After a correct compilation, two file must be generated,
exampleServer.o and exampleServer.so.1

• exampleClient.c. File used by DIAMETER API in order to implement client-side of
Sun Ping Extension. After a correct compilation, an executable file (exampleClient) is
generated.

• runClient.sh. Shell script which launches the client. A variable named CONF_FILE
specifies where the main configuration file (aaa.conf) is.

• runServer.sh. Shell script which launches the server. A variable named CONF_FILE
specifies where the main configuration file (aaa.conf) is.

NOTE: If there is not an installed compiler, we must install one. We use gcc-2.95.3 whose
package can be downloaded from [SUN-FREE]

After the client and server are compiled we must modify the configuration file in order to get a
correct execution of this example.

10.2 Configuration files

The file configuration is usually put in /etc/aaa/ directory. In order to separate client and
server configuration files we have created two directories exampleClient and exampleServer
which contains file configuration for client and server respectively. Examples of these files can
be founded in ./aaaapi-example-1.0.1/config/exampleClient/ and ./aaaapi-example-
1.0.1/config/exampleServer/. The most important files are following shown.

Server Side
• aaa.conf. This file contains some parameters of configuration for example level of

debug (Debug-Mask = LEVEL1) and where rest of configuration files are. It is pointed
from runServer.sh.

• domains. This file has information about what server must do when receives a request for
a domain. There are three possibilities signalled by Action value :

o Action = local. This server must locally process this request.
o Action = proxy. The server must proxy received requests for a domain to

another DIAMETER server.
o Action = redirect. In this case, server provides DIAMETER Home Server

address resolution for a particular realm or domain. This kind of server is called
redirect server.

A more exhaustive explanation can be found in file server’s domains file (/(INSTALL-
DIR)/config/exampleServer/domains).

For example, in our case we have next content in server’s domains file:
[ipv6.umu.es]

Action=local

So all requests send to ipv6.umu.es domain are processed by our server.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 44 of 6868

• clients. This file must inform about all possible servers or clients which can establish
connections with this server. The majority of these parameters is unused or is not
explained but we have obtained some information about them through interchanged e-
mails with developers. The values used by us are the same than example configuration
files but ,for instance, AuthenticationKey and EncryptionKey are not used;
connectAllowed flag signals that this server cannot start a connection with the specified
client and transport specifies the transport layer used (TCP in this case).

[2001:720:1710:0:203:baff:fe11:7599]

type = Proxy
SecurityType = hop-by-hop
SecurityType = none
AuthenticationKey = ACoolSecret
EncryptionKey = AnEvenBetterKey
transport = diam-tcp
connectAllowed = no

Client Side
• aaa.conf. This file contains some parameters of configuration, for example level of

debug (Debug-Mask = LEVEL1) and where rest of configuration files are. It is pointed
from runClient.sh.

• domains. In clients, this file has information about where client must send a request for
domain. For example, we have next content (Action field must always be proxy) :

[ipv6.umu.es]

Dest=2001:720:1710:0:a00:20ff:fec5:5260
Action=proxy

So, an user request from ipv6.umu.es domain are sent to
2001:720:1710:0:a00:20ff:fec5:5260 (Server’s IPv6 address).

• clients. This file contains information about servers can be connected by this client.
The server’s IPv6 address or name is written inside square bracket. Now
connectAllowed is set to yes because this client can start connections to the server.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 45 of 6868

[2001:720:1710:0:a00:20ff:fec5:5260]
type = Proxy
#SecurityType = hop-by-hop
SecurityType = none
AuthenticationKey = ACoolSecret
EncryptionKey = AnEvenBetterKey
transport = diam-tcp
connectAllowed = yes

• modules. This file includes the names of the dynamically loadable libraries that must be
loaded by the server. Each library gives support to a specific application and it is really a
different ASM (see section 3.2).

[exampleServer.so.1]

10.3 Dictionary: XML files

In order to get the definition of DIAMETER Base Protocol AVPs, DIAMETER API uses a XML
files where AVPs and commands are defined. By creating new .xml files which must be added
to dictionary.xml, we can add new commands and AVPs to support new DIAMETER
extensions. In order to do this, we must modify dictionary.xml and add two lines:

…
<!DOCTYPE dictionary SYSTEM "dictionary.dtd" [
<!ENTITY ourfile SYSTEM "ourfile.xml"> (at the beginning of the file)
…

</base>
…
&ourfile; (at the finish of the file)
…
</dictionary>

10.4 Start up

We firstly need to execute ./runServer.sh to execute the DIAMETER daemon. Now it listens
by waiting request from a client. Now, we can execute ./runClient.sh, and the client starts. By
default, five packets are sent to the server to test its reachability. The server must be answer to
this request after packets sent by client has been verified. Note server must be executed in a
different machine than client.

10.5 Basic Application: Test

This application is only a basic example in order to show how DIAMETER API developed by
SUN can be used to create a new DIAMETER extension. This application only sends a request
(Test-Request command) with a username (User-Name AVP is placed in nasreq.xml file) a
password (User-Password AVP is also placed in nasreq.xml file) and finally a text message.
This message is placed inside a new defined AVP (Message). This new information is written in
test.xml following shown:

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 46 of 6868

<application id="777" name="Test Application"
uri="ftp://ftp.ietf.org/internet-drafts/draft-calhoun-diameter-sun-ping-
02.txt">

<!-- *********************** Commands ***************************** -->
<!-- Test Extension -->
<command name="Test" code="511" vendor-id="None"/>
<!-- ********************** End Commands ************************** -->
<!-- ************************ Test Extension AVPS ******************* -->
<avp name="Message" code="1010" mandatory="must" vendor-bit="mustnot">

<type type-name="UTF8String"/>
</avp>
<!-- ********************** End Test Extension AVPS ***************** -->

<!-- ********************* Test Extension AVPs ***************************-->
</application>

This file defines a new application identifier (it must be unique and we have chosen 777, but this
number should well defined and standardized though now it is only for testing purpose); name of
the application (tag name=”Test Application”); a new command (Test) whose code is 511 (it
must also be standardized). Finally, a new AVP is build. A name must be set (“Message”); a
code which must be different than all codes defined in dictionary.xml and other .xml files of
different applications. In this case, the type of this AVP is a string (UTF8String). New types can
be seen in [DIAM-API].

In order to DIAMETER API can handle this new command and AVP (in general, the new
application) we must modify dictionary.xml (ourfile = test).

This new example is based on the Sun Ping Extension example because it is a good template to
develop new applications.

This client program has four parameters:
• -C : Sets the config file name
• -m : Set the message sent to the server.
• -p : Set user password (this value must be encrypted but this program is only a basic

example so we add this option to set a text clear password)
• -u,-U: Set the user name . It consists of name@domain

So an example of execution would be:
bash# exampleClient –u “umu@ipv6.um.es” –p “access” –m “Hello from client” -
C /etc/aaa/testClient/aaa.conf

The server receives user name (User-Name AVP), its password (User-Password AVP) and the
message (“Hello from Client” in Message AVP). It verifies if user and password and if both
are, then it will send a new Message AVP with “Welcome” text. If user or password is not valid a
“Good-Bye” text is sent back. Following, the code of both programs is shown:

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 47 of 6868

#####CLIENT SOURCE CODE########

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/time.h>
#include <string.h>
#include <sys/signal.h>
#include <aaa/aaa.h>

#define SYNCH_SLEEP_TIME 5

/*
* Global Variables.
*/
AAACommandCode DIAM_APP_TEST;
AAA_AVPCode DIAM_AVP_USERNAME;
AAA_AVPCode DIAM_AVP_PASSWORD;
AAA_AVPCode DIAM_AVP_MESSAGE;

AAAVendorId DIAM_APP_TEST_VID;

AAAExtensionId DIAM_EXTENSION_TEST;

AAACommandCode DIAM_APP_DISCONNECT_PEER;
AAA_AVPCode DIAM_AVP_DISCONNECT_CAUSE;

/*
* Name of attributes, as found in the dictionary...
*/
char *testExtension = "Test Application";
char *testPing = "Test";
char *diamAvpUserName = "User-Name";
char *diamAvpPassword = "User-Password";
char *diamAvpMessage = "Message";
char *disconnectPeer = "Disconnect-Peer";
char *diamAvpDisconnectCause = "Disconnect-Cause";

#define MAX_HOST_NAME_LEN 100
in_port_t serverPort = 0;
int responseLeft = 1;
unsigned long sleepTime = 0;
/*Default AVP values*/
char *defaultUserName = "user@ipv6.umu.es";
AAACallbackHandle *testHandle;
char *defaultPassword = "password";
char *defaultMessage = "Hello";
char *message=NULL;
char *password=NULL;
char *username=NULL;
/*
* Local prototypes
*/
AAAReturnCode SendAppTestReq(AAASessionId *sessionId, char
*username,char *password);

static AAAReturnCode pingCallback(AAAMessage *mcb);

#define DEFAULT_NUM_PACKETS 5
#ifdef DEFAULT_DEBUG_FILE_NAME
undef DEFAULT_DEBUG_FILE_NAME
#endif
#define DEFAULT_DEBUG_FILE_NAME "/tmp/exampleClient.log"

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 48 of 6868

#define AVP_NO_VENDOR_ID 0

/*
* Function: InitializeTestDictionaryVariables
*
* Arguments:
*
* Description: This function resolve the AVP,
* command codes and the Application Id using
* the dictionary services.
*
* Returns: AAA_ERR_SUCCESS upon completion.
* AAA_ERR_CONFIG if the request failed.
*
*/
int
InitializeTestDictionaryVariables()
{

AAADictionaryEntry dictEntry;
int junk;

/*
* Let's resolve our command codes...
*/
if (AAAGetCommandCode(testPing, &DIAM_APP_TEST,&DIAM_APP_TEST_VID) !=

AAA_ERR_SUCCESS)
{

fprintf(stderr, "Unable to find Command %s in dictionary\n",
testPing);

return (AAA_ERR_CONFIG);
}

if (AAAGetCommandCode(disconnectPeer, &DIAM_APP_DISCONNECT_PEER,&junk) !=
AAA_ERR_SUCCESS)

{
fprintf(stderr, "Unable to find command %s in

dictionary!\n",disconnectPeer);
return (AAA_ERR_CONFIG);

}

/*
* Let's resolve the ApplicationId ID
*/
if ((DIAM_EXTENSION_TEST =

AAALookupApplicationIdUsingName(testExtension))== AAA_ERR_NOT_FOUND)
{

fprintf(stderr, "Unable to find Extension \"%s\" in
dictionary\n",

testExtension);
return (AAA_ERR_CONFIG);

}

fprintf(stderr, "DEBUG: Using extension \"%s\" = %d\n",
testExtension, DIAM_EXTENSION_TEST);

/*
* Get the DISCONNECT_CAUSE AVP Information
*/
if (AAADictionaryEntryFromName(diamAvpDisconnectCause,

NO_VENDOR_ID,&dictEntry) != AAA_ERR_SUCCESS)
{

fprintf(stderr, "Unable to find %s in
dictionary\n",diamAvpDisconnectCause);

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 49 of 6868

return (AAA_ERR_CONFIG);
}
DIAM_AVP_DISCONNECT_CAUSE = dictEntry.avpCode;

/*
* Get the USERNAME AVP Information
*/
if (AAADictionaryEntryFromName(diamAvpUserName, NO_VENDOR_ID,&dictEntry)

!= AAA_ERR_SUCCESS) {
fprintf(stderr, "Unable to find %s in

dictionary\n",diamAvpUserName);
return (AAA_ERR_CONFIG);

}

DIAM_AVP_USERNAME = dictEntry.avpCode;

/*
* Get the PASSWORD AVP Information
*/
if (AAADictionaryEntryFromName(diamAvpPassword,NO_VENDOR_ID,&dictEntry)

!= AAA_ERR_SUCCESS)
{
fprintf(stderr,"Unable to find %s in dictionary\n",diamAvpPassword);
return (AAA_ERR_CONFIG);

}

DIAM_AVP_PASSWORD = dictEntry.avpCode;

/*
* Get the Message AVP Information
*/

if (AAADictionaryEntryFromName(diamAvpMessage,NO_VENDOR_ID,&dictEntry) !=
AAA_ERR_SUCCESS)

{
fprintf(stderr,"Unable to find %s in dictionary\n",diamAvpPassword);
return (AAA_ERR_CONFIG);

}

DIAM_AVP_MESSAGE = dictEntry.avpCode;

return (AAA_ERR_SUCCESS);
} /* InitializeDictionaryTestVariables */

/*
* Function: PacketBurstClient
*
* Arguments: char *username -- username to use in test command.
* char *password -- user password.
*
* Description: This function will transmit the Device - Watchdog - Ind
* message defined in the DIAMETER base protocol.
*
* Returns: AAA_ERR_SUCCESS upon completion.
* AAA_ERR_NO_MEM if no memory was available.
* AAA_ERR_FLOW_CONTROL if the packet was queued but
* could not be immediately sent.
*
*/

AAAReturnCode
PacketBurstClient(char *username,char *password)
{

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 50 of 6868

AAASessionId *sessionId;
AAAReturnCode result;

int nsession=1;

/*
* Send Hello Message
*/
/* Use a session. Bit of an overkill . . */

result = AAAStartSession(&sessionId, (void *)nsession,username);

if (result != AAA_ERR_SUCCESS)
{

fprintf(stderr, "Error! Unable to create a session!\n");
return -1;

}
/*Send request...*/
if (SendAppTestReq(sessionId,username,password) != AAA_ERR_SUCCESS)
{

fprintf(stderr,"Thread %d -SendAppTestReq
failed\n",(int)pthread_self());

return -1;
}
return (0);

} /* PacketBurstClient */

/*
* Function: SendAppTestReq
*
* Arguments: ccb - Pointer to a Client Control Block
*
* Description: This function will transmit the Device - Watchdog - Ind
* message defined in the DIAMETER base protocol.
*
* Returns: AAA_ERR_SUCCESS upon completion.
* AAA_ERR_NO_MEM if no memory was available.
* AAA_ERR_FLOW_CONTROL if the packet was queued but
* could not be immediately sent.
*
*/
AAAReturnCode
SendAppTestReq(AAASessionId *sessionId, char *username, char *password)
{

AAAMessage *mcb;
AAAReturnCode result = AAA_ERR_SUCCESS;
AAA_AVP *passwordAvp, *userAvp, *messageAvp;
/*
* Allocate the MCB.
*/
if ((mcb = AAANewMessage(DIAM_APP_TEST, DIAM_APP_TEST_VID,

sessionId, DIAM_EXTENSION_TEST,
NULL)) == NULL)

{
fprintf(stderr,"AAA_AllocateMessageControlBlock failed

(%d)\n",result);
return (AAA_ERR_NOMEM);

}
/* Mark it as a request */

AAASetMessageAsRequest(mcb);

/*
* Add the User-Name

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 51 of 6868

*/

if (username == NULL) username=defaultUserName;

if (AAACreateAndAddAVPToList(&mcb->avpList, DIAM_AVP_USERNAME,
AAA_AVPI_FLAG_NONE, AVP_NO_VENDOR_ID,
username, strlen(username) + 1))

{
fprintf(stderr, "Unable to add User-Name AVP\n");
return (AAA_ERR_NOMEM);

}

/*
* Add the Password
*/
if (password == NULL) password=defaultPassword;
if (AAACreateAndAddAVPToList(&mcb->avpList,

DIAM_AVP_PASSWORD,AAA_AVPI_FLAG_NONE,
AVP_NO_VENDOR_ID,password, strlen(password) + 1))

{
fprintf(stderr, "Unable to add Password AVP\n");
return (AAA_ERR_NOMEM);

}

/*
*Add the message
*/

if (message == NULL) message=defaultMessage;
if (AAACreateAndAddAVPToList(&mcb->avpList,

DIAM_AVP_MESSAGE,AAA_AVPI_FLAG_NONE,
AVP_NO_VENDOR_ID,message, strlen(message) + 1))
{

fprintf(stderr, "Unable to add Message AVP\n");
return (AAA_ERR_NOMEM);

}

/*
* Then we send that message to our peer.
*/

if ((result = AAASendMessage(mcb))!= 0)
{

fprintf(stderr, "AAA_SendMCB failed (%d)\n", result);
}

return (result);
}

AAAReturnCode
sendDisconnect(int disconnectCause)
{

AAAMessage *mcb;
AAAReturnCode result;

/*
* Allocate the MCB.
*/
if ((mcb = AAANewMessage(DIAM_APP_DISCONNECT_PEER, 0, NULL,

DIAM_EXTENSION_TEST, NULL)) == NULL)
{

fprintf(stderr,"AAA_AllocateMessageControlBlock failed.\n");
return (AAA_ERR_NOMEM);

}

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 52 of 6868

/* Mark it as a request */
AAASetMessageAsRequest(mcb);

/* Add our disconnect reason */
if (AAACreateAndAddAVPToList(&mcb->avpList, DIAM_AVP_DISCONNECT_CAUSE,

AAA_AVPI_FLAG_NONE, NO_VENDOR_ID,
(char *)&disconnectCause,
sizeof(disconnectCause)))

{
fprintf(stderr, "Unable to add Disconnect Cause AVP\n");
return (AAA_ERR_NOMEM);

}

/*
* Then we send that message to our peer.
*/
if ((result = AAASendMessage(mcb))!= 0) {

fprintf(stderr, "AAA_SendMCB failed (%d)\n", result);
}

return (result);

} /* sendDisconnect() */

/*
* Function: SPRCallback
*
* Arguments: mcb - Pointer to a Message Control Block
*
* Description: This function will handle the DIAMETER
* Test Request message. We should only receive
* this message if we were unable to send the
* request to our peer.
*
* Returns: AAA_ERR_SUCCESS if successfully handled.
* AAA_ERR_FAILURE if an error occurred.
*
*/
AAAReturnCode
SPRCallback(AAAMessage *mcb)
{

fprintf(stderr, "!");

AAAFreeMessage(mcb);

/*
* Here we return a success because we are freeing the MCB.
*/
return (AAA_ERR_SUCCESS);

} /* SPRCallback */

/*
* Function: checkAVPPayload
*
* Arguments: mcb - Pointer to a Message sent by server.
*
* Description: This function checks message sent by server.
*
*
*/

void

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 53 of 6868

checkAVPPayload(AAAMessage *mcb)
{

/*Three AVPs that must be found.*/
AAA_AVP *passwordAvp, *userAvp,*messageAvp;
/* First, find our User Name AVP */
userAvp = AAAFindMatchingAVP(mcb->avpList,NULL,

DIAM_AVP_USERNAME,
NO_VENDOR_ID,
AAA_FORWARD_SEARCH);

if (userAvp == NULL)
{

fprintf(stderr, "Error! Unable to find User Name AVP!!!\n");
return;

}

/* Second, find our Password AVP */

passwordAvp = AAAFindMatchingAVP(mcb->avpList,
NULL,
DIAM_AVP_PASSWORD,
NO_VENDOR_ID,
AAA_FORWARD_SEARCH);

if (passwordAvp == NULL)
{

fprintf(stderr, "Error! Unable to find User Password AVP in list
%p!!!\n",mcb->avpList);

return;
}

/* Third, find Message AVP sent by server */
messageAvp = AAAFindMatchingAVP(mcb-

>avpList,NULL,DIAM_AVP_MESSAGE,NO_VENDOR_ID,
AAA_FORWARD_SEARCH);

if (messageAvp == NULL)
{
fprintf(stderr, "Error! Unable to find Message AVP in list\n");
return;

}

fprintf(stdout,"\n\n Message from the server <-- %s\n\n",(char
*)messageAvp->data);
} /* checkAVPPayload */

/*
* Function: SPACallback
*
* Arguments: mcb - Pointer to a Message Control Block
*
* Description: This function will handle the message sent by server
*
* Returns: AAA_ERR_SUCCESS if successfully handled.
* AAA_ERR_FAILURE if an error occurred.
*
*/
AAAReturnCode
SPACallback(AAAMessage *mcb)
{

checkAVPPayload(mcb);
AAAFreeMessage(mcb);
responseLeft--;

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 54 of 6868

if(mcb->resultCode == DIAMETER_USER_UNKNOWN)
{
fprintf(stdout,"\nUser Unknown\n");

}
return (AAA_ERR_SUCCESS);

} /* SPACallback */

/*
* Function: pingCallback
*
* Arguments: mcb - Pointer to a message
*
* Description: This function is the AAA callback.
* It will call the appropriate sub-function
* that will handle the message based on its
* command code and message type.
*
* Returns: AAA_ERR_SUCCESS if successfully handled.
* AAA_ERR_FAILURE if an error occurred.
*
*/
static AAAReturnCode
pingCallback(AAAMessage *mcb)
{

if (mcb->commandCode == DIAM_APP_TEST)
{

if (IS_REQUEST(mcb))
{

return (SPRCallback(mcb));
}

else
{

return (SPACallback(mcb));
}

}

/*
* Somehow we received something we weren't expecting.
*/
return (AAA_ERR_FAILURE);

} /* pingCallback */

/*
* Signal handlers to try to exit gracefully.
*/
void
handler(int signo)
{

fprintf(stderr, "Caught signal %d\n", signo);
responseLeft=0;

} /* handler */

void
setupSignalHandler()
{

signal (SIGALRM, handler);
signal (SIGTERM, handler);
signal (SIGINT, handler);

} /* setupSignalHandler */

/*

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 55 of 6868

* Function: main
*
* Arguments: argc - Number of arguments
* argv - Pointer to arguments
*
* Description: exampleClient's Main.
*
* Returns: exit the server.
*/

int
main(int argc, char **argv)
{

int c;
int argumentError = 0;
char *configFileName = NULL;

extern char *optarg;
int disconnectCause = 0;

fprintf(stderr,
"exampleClient -- Implements Test extension to

Diameter\n");

/*
* Initialize local variables
*/

#define USAGE "USAGE: %s [flags]\n\
\tWhere flags are:\n\
\t -h - Help\n\
\t -H - Help\n\
\t -? - Help\n\
\t -C - Sets the Config File Name\n\
\t -m - Sets the message.\n\
\t -p - Sets the password\n\
\t -U - Sets the username\n"

/*
* Parse through the command line options. Here are the
* supported options:
*
* h - Help
* H - Help
* ? – Help
* m - Sets the message
* p - Sets the password
* U - Sets the username
* C - Sets the Config File Name
*/
while ((c = getopt(argc, argv, "C:m:ln:p:u:U:hH?")) != EOF) {

switch (c) {
case 'C':

/*
* Sets the Config File Name.
*/
configFileName = optarg;
break;

case 'm':
/*
* Set the message value
*/
message = optarg;

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 56 of 6868

break;
case 'p':

/*
* Sets the password.
*/
password = optarg;
break;

case 'u':
case 'U':

/*
* Set the username.
*/
username = optarg;
break;

case 'h':
case 'H':
case '?':
default:

argumentError++;
break;

}
}

if (argumentError) {
fprintf(stderr, USAGE, argv[0]);
return (AAA_ERR_PARAMETER);

}

setupSignalHandler();

/*
* If no username was provided, use the default value.
*/
if (username == NULL) {

username = defaultUserName;
}
fprintf(stderr, "\nUser %s sending test -->\n", username);

/*
* Initialize the library
*/
fprintf(stderr, "Starting the API (config=%s)\n",

configFileName?configFileName:"(null)");
if (AAAOpen(configFileName) != AAA_ERR_SUCCESS) {

fprintf(stderr, "Unable to initialize Diameter Library\n");
exit(-1);

}

/*
* We need to initialize our AVPs
*/
fprintf(stderr, "Initializing our dictionary\n");
if (InitializeTestDictionaryVariables() != AAA_ERR_SUCCESS) {

fprintf(stderr,
"Unable to initialize AVPs from dictionary\n");

return (AAA_ERR_CONFIG);
}

/*
* Although one would think that we don't care about receiving a
* request, we need to register this in case the request cannot
* be sent to a peer.

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 57 of 6868

*/
fprintf(stderr, "Registering Callbacks\n");
if ((testHandle =

AAARegisterCommandCallback(DIAM_APP_TEST,
DIAM_APP_TEST_VID, testPing, DIAM_EXTENSION_TEST,
pingCallback, AAA_APP_INSTALL_ANYWHERE)) == NULL) {

fprintf(stderr, "Unable to register %s command\n",
testPing);

exit(-2);
}

/*
* Sleep a bit waiting for the clients to synch up.
*/
fprintf(stderr, "Sleeping for %d seconds before starting test\n",

SYNCH_SLEEP_TIME);
sleep(SYNCH_SLEEP_TIME);

/*
* Send our packets.
*/
fprintf(stderr, "Starting the Test\n");
PacketBurstClient(username,password);

/*
* Sleep forever waiting for response.
*/
while (responseLeft > 0)
{

fprintf(stderr, "Still waiting for the response!\n");
sleep(1);

}

if (AAADeregisterCommandCallback(testHandle) != AAA_ERR_SUCCESS) {
fprintf(stderr, "Unable to deregister the DIAMETER command\n");
exit(-5);

}

/*
* Disconnect from our peer.
*/
fprintf(stderr, "Sending a disconnect with cause of %d\n",

disconnectCause);
if (sendDisconnect(disconnectCause) != AAA_ERR_SUCCESS) {

fprintf(stderr, "Unable to send disconnect message!\n");
}

AAAClose();
exit(0);

} /* main */

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 58 of 6868

############ SERVER SOURCE CODE ############

#include <stdio.h>
#include <strings.h>
#include <aaa/aaa.h>

#define AVP_NO_VENDOR_ID 0

static AAACallbackHandle *testHandle;

/*
* Local prototypes
*/
static AAAReturnCode aaatestCallback(AAAMessage *);

char *userBD="umu@ipv6.umu.es";
char *passwordUser="access";
/*Text messages shown by this server*/
char *messageHello="Welcome";
char *messageGoodBye="Good-Bye";

/*
* Global Variables.
*/

AAACommandCode DIAM_APP_TEST;
AAA_AVPCode DIAM_AVP_USERNAME;
AAA_AVPCode DIAM_AVP_PASSWORD;
AAA_AVPCode DIAM_AVP_MESSAGE;
AAAVendorId DIAM_APP_TEST_VID;

AAAExtensionId DIAM_EXTENSION_TEST;

/*
* Name of attributes, as found in the dictionary...
*/
char *testExtension = "Test Application";
char *testCommand = "Test";
char *diamAvpUserName = "User-Name";
char *diamAvpPassword = "User-Password";
char *diamAvpMessage = "Message";

/*
* Function: InitializeTestDictionaryVariables
*
* Description: This function resolve the AVP,
* command codes and the extension Id using
* the dictionary services.
*
* Returns: AAA_ERR_SUCCESS on Success
* AAA_ERR_CONFIG on Failure
*
*/
int
InitializeTestDictionaryVariables()
{

AAADictionaryEntry dictEntry;
/*
* Resolve our Test Command Codes
*/
if (AAAGetCommandCode(testCommand, &DIAM_APP_TEST,

&DIAM_APP_TEST_VID)) {
fprintf(stderr, "Unable to find Command %s in dictionary!\n",

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 59 of 6868

testCommand);
return (AAA_ERR_CONFIG);

}

/*
* Resolve the extension ID
*/
if ((DIAM_EXTENSION_TEST =

AAALookupApplicationIdUsingName(testExtension))
== AAA_ERR_NOT_FOUND) {

fprintf(stderr,
"Unable to find Application %s in dictionary\n",
testExtension);

return (AAA_ERR_CONFIG);
}

fprintf(stderr, "DEBUG: Command %d(%d), Extension %d\n",
DIAM_APP_TEST, DIAM_APP_TEST_VID, DIAM_EXTENSION_TEST);

/*
* Resolve the our AVPs
*/

/*User-Name AVP*/
if (AAADictionaryEntryFromName(diamAvpUserName, NO_VENDOR_ID,&dictEntry)

!= AAA_ERR_SUCCESS)
{
fprintf(stderr, "Unable to find %s in dictionary\n",diamAvpUserName);
return (AAA_ERR_CONFIG);

}

DIAM_AVP_USERNAME = dictEntry.avpCode;

/*Password AVP*/
if (AAADictionaryEntryFromName(diamAvpPassword,NO_VENDOR_ID,&dictEntry)

!= AAA_ERR_SUCCESS)
{
fprintf(stderr, "Unable to find %s in dictionary\n",diamAvpPassword);
return (AAA_ERR_CONFIG);

}

DIAM_AVP_PASSWORD = dictEntry.avpCode;

/*Message AVP*/
if (AAADictionaryEntryFromName(diamAvpMessage,NO_VENDOR_ID,&dictEntry)

!= AAA_ERR_SUCCESS)
{
fprintf(stderr, "Unable to find %s in dictionary\n",diamAvpMessage);
return (AAA_ERR_CONFIG);

}

DIAM_AVP_MESSAGE = dictEntry.avpCode;

return (AAA_ERR_SUCCESS);
} /* InitializeTestDictionaryVariables */

/*
* Function: InitializeLibrary
*
* Arguments: configFile - Pointer to the AAA Config File
* section - Section in the AAA Config File
*
*
* Description: This function is the first function called by

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 60 of 6868

* the Sun Microsystems, Inc. Diameter server. It passes
* in the filename and section of the INI file. These
* variables could be used to extract application settings
* from the configuration file.
*
* This server, does not have any configurable settings.
*
* Returns: AAA_ERR_SUCCESS upon completion.
* AAA_ERR_* if an error occured.
*
*/
AAAReturnCode
InitializeLibrary(char *configFile, char *section)
{

if (InitializeTestDictionaryVariables() != AAA_ERR_SUCCESS) {
fprintf(stderr, "Unable to initialize AVPs from dictionary\n");
return (AAA_ERR_CONFIG);

}

fprintf(stderr, "Registering Application %d\n", DIAM_EXTENSION_TEST);
if ((testHandle = AAARegisterCommandCallback(DIAM_APP_TEST,

DIAM_APP_TEST_VID, testCommand, DIAM_EXTENSION_TEST,
aaatestCallback, AAA_APP_INSTALL_ANYWHERE)) == NULL) {
fprintf(stderr, "Unable to register %s command", testCommand);
return (AAA_ERR_CANNOT_REGISTER);

}

fprintf(stdout, "Example Test Server Initialized!!!!\n");

return (AAA_ERR_SUCCESS);
} /* InitializeLibrary */

/*
* Function: UnInitializeLibrary
*
* Arguments:
*
* Description: This function will be called from the Sun Microsystems, Inc.
* Diameter server to uninitialize the library
*
* Returns: AAA_ERR_SUCCESS if successfully un-initialized
* AAA_ERR_* if unable to un-initialize
*
*/
AAAReturnCode
UnInitializeLibrary()
{

if (AAADeregisterCommandCallback(testHandle) !=
AAA_ERR_SUCCESS) {

fprintf(stderr, "Unable to deregister the %s command (handle was
%p)\n",

testCommand, testHandle);
return (AAA_ERR_FAILURE);

}

testHandle = 0;

return (AAA_ERR_SUCCESS);
} /* UnInitializeLibrary */

/*Checks if a password value is valid*/
int checkPasswd(AAA_AVP *passwd)
{

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 61 of 6868

return strncmp(passwordUser,(char *)passwd->data,strlen(passwordUser));
}
/*Checks if user name value is valid*/
int checkUserName(AAA_AVP *userName)
{
return strncmp(userBD,(char *)userName->data,strlen(userBD));

}
/*
* Function: checkAVPPayload
*
* Arguments: mcb - Pointer to a Message sent by server.
*
* Description: This function checks message sent by server.
*
*/
int
checkAVPPayload(AAAMessage *mcb)
{

AAA_AVP *passwordAvp, *userAvp, *messageAvp;

/*Find User AVP*/

userAvp = AAAFindMatchingAVP(mcb-
>avpList,NULL,DIAM_AVP_USERNAME,NO_VENDOR_ID,AAA_FORWARD_SEARCH);

if (userAvp == NULL)
{

fprintf(stderr, "Error! Unable to find User Name AVP!!!\n");
return 0;

}

/*Find Password AVP.Note password is not encrypted*/
passwordAvp = AAAFindMatchingAVP(mcb-

>avpList,NULL,DIAM_AVP_PASSWORD,NO_VENDOR_ID,AAA_FORWARD_SEARCH);
if (passwordAvp == NULL)
{

fprintf(stderr, "\nError! Unable to find User Password AVP in
list %p!!!\n",mcb->avpList);

return 0;
}

/*Find Message AVP*/
messageAvp = AAAFindMatchingAVP(mcb-

>avpList,NULL,DIAM_AVP_MESSAGE,NO_VENDOR_ID,AAA_FORWARD_SEARCH);
if (messageAvp == NULL)
{

fprintf(stderr, "\nError! Unable to find Message AVP in list
%p!!!\n",mcb->avpList);

return 0;
}

/*Check if this user and its password are valid*/
if(!checkUserName(userAvp)&& !checkPasswd(passwordAvp))
{
fprintf(stdout,"\n\nMessage from user %s --> %s\n\n",(char

*)(userAvp->data),(char *)(messageAvp->data));
}
else
{
fprintf(stderr,"\n\nInvalid User\n\n");
/*Remove Message AVP in order to add another one with a new

message*/
if (AAARemoveAVPFromList(mcb->avpList,messageAvp))

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 62 of 6868

{
fprintf(stderr,"Error : Unable to delete Message AVP from

list\n");
return 0;

}
return 0;

}

/*Remove Message AVP in order to add another one with a new message*/

if (AAARemoveAVPFromList(mcb->avpList,messageAvp))
{
fprintf(stderr,"Error : Unable to delete Message AVP from list\n");
return 0;

}
return 1;

} /* checkAVPPayload */

/*
* Function: testReqCallback
*
* Arguments: mcb - Pointer to a Message Control Block
*
* Description: This function will handle the DIAMETER
* Test-Request message.
*
* Returns: AAA_ERR_SUCCESS if successfully handled.
* AAA_ERR_FAILURE if an error occurred.
*
*/
AAAReturnCode
testReqCallback(AAAMessage *mcb)
{

AAAResultCode result;
char *message=NULL;

if (IS_PROXY_REQUEST(mcb)) {
fprintf(stderr, ">");

} else if (IS_REDIRECT_REQUEST(mcb)) {
fprintf(stderr, "@");

} else {
/*
* Answer to this message
*/

if (checkAVPPayload(mcb))
{

result = DIAMETER_SUCCESS;
message = messageHello;

}
else
{
result = DIAMETER_USER_UNKNOWN;
message = messageGoodBye;

}

/*Create a new Message AVP*/

if (AAACreateAndAddAVPToList(&mcb->avpList,
DIAM_AVP_MESSAGE,AAA_AVPI_FLAG_NONE,

AVP_NO_VENDOR_ID,message, strlen(message) + 1))
{

fprintf(stderr, "Unable to add Message AVP\n");

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 63 of 6868

return (AAA_ERR_NOMEM);
}

if (AAARespondToMessage(mcb, result) !=
AAA_ERR_SUCCESS)

{
fprintf(stderr,

"Unable to reply to request!!!\n");
AAAFreeMessage(mcb);

/*
* Here we return a success since we freed the MCB.
*/

return (AAA_ERR_SUCCESS);
}

/*
* We print verbose messages to stdout so they can
* be redirected to /dev/null
*/
fprintf(stdout,"Sending a Test-Answer response with Id %d\n", mcb-

>identifier);

}

/*
* We need to return a failure in order to let the message run
* its proxy course.
*/
return (AAA_ERR_FAILURE);

} /* testReqCallback */

/*
* Function: testAnswCallback
*
* Arguments: mcb - Pointer to a Message Control Block
*
* Description: This function will handle the DIAMETER
* Test-Answer message. This should only be
* called if we have trouble delivering the
* Test-Answer, or if a proxy is mis-configured.
*
* Returns: AAA_ERR_SUCCESS if successfully handled.
* AAA_ERR_FAILURE if an error occurred.
*
*/
AAAReturnCode
testAnswCallback(AAAMessage *mcb)
{

/*
* Thanks for the response.
*/
if (!IS_PROXY_REQUEST(mcb)) {

/*
* Notify the Application by calling its callback routine
*/
fprintf(stderr, "Error: Got a ping answer\n");

AAAFreeMessage(mcb);

/*
* Here we return a success since we freed the MCB.
*/

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 64 of 6868

return (AAA_ERR_SUCCESS);
} else {

fprintf(stderr, "<");
}

/*
* We need to return a failure in order to let the message run
* its proxy course.
*/
return (AAA_ERR_FAILURE);

} /* testAnswCallback */

/*
* Function: aaatestCallback
*
* Arguments: mcb - Pointer to a Message Control Block
*
* Description: This function is the AAA callback.
* It will call the appropriate sub-function
* that will handle the message based on its
* command code and message type.
*
* Returns: AAA_ERR_SUCCESS if successfully handled.
* AAA_ERR_FAILURE if an error occurred.
*
*/
static AAAReturnCode
aaatestCallback(AAAMessage *mcb)
{

if (mcb->commandCode == DIAM_APP_TEST) {
if (IS_REQUEST(mcb)) {

return (testReqCallback(mcb));
} else {

return (testAnswCallback(mcb));
}

}

/*
* Somehow we received something we weren't expecting.
*/
return (AAA_ERR_FAILURE);

} /* aaapingCallback */

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 65 of 6868

11. REFERENCES

 [RFC2903] C. De Laat, Gross
“Generic AAA Architecture” , August 2000
http://www.ietf.org/rfc/rfc2903.txt

[RFC2904] J. Vollbrecht, P.Calhoun
“AAA Authorization Framework”, August 2000
http://www.ietf.org/rfc/rfc2904.txt

[AAAIPV6] Charles E. Perkins Thomas Eklund
 “AAA for IPv6 Network Access”. 2002
Internet draft

[AAAARCH] Authorization,Authentication and Accounting ARCHitecture research group
http://www.aaaarch.org/

[AAAIETF] Authentication, Authorization and Accounting (aaa)
http://www.ietf.org/html.charters/aaa-charter.html

[SLADOC] E.W. de Bruijn, L.H.M. Gommans
“Outline of a Service Level Agreement”, October 2000
http://www.aaaarch.org/doc13/ServiceLevelAgreement.htm

[RFC3280] R. Housley, W. Polk
“Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile”, April 2002
http://www.ietf.org/rfc/rfc3280.txt

[RFC1510] J. Kohl,C. Neuman
“The Kerberos Network Authentication Service (V5)”, September 1993
http://www.ietf.org/rfc/rfc1510.txt

[ROAMOPS] Roaming Operations Working Group
http://www.ietf.org/html.charters/roamops-charter.html

[RFC2989] B. Aboba, P. Calhoun
“Criteria for Evaluating AAA Protocols for Network Access”, November 2000
http://www.ietf.org/rfc/rfc2989.txt

[RFC3169] M. Beadles D. Mitton
“Criteria for Evaluating Network Access Server Protocols”, November 2000
 http://www.ietf.org/rfc/rfc3169.txt

[RFC1661] W. Simpson
“The Point-to-Point Protocol (PPP)”, July 1994
http://www.ietf.org/rfc/rfc1661.txt

[RFC2865] C. Rigney S. Willens
“Remote Authentication Dial In User Service (RADIUS)”, June 2000
http://www.ietf.org/rfc/rfc2865.txt

[DIAMFRWK] Pat R. Calhoun, Glen Zorn
“Diameter Framework Document”, March 2001
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-framework-01.txt

[RFC1055] J. Romkey
“A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS OVER SERIAL
LINES: SLIP”, June 1988
http://www.ietf.org/rfc/rfc1055.txt

[RFC3162] B. Aboba, G. Zorn
“RADIUS and IPv6”, August 2001
http://www.ietf.org/rfc/rfc3162.txt

[FREERADIUS] FreeRADIUS Server Project
http://www.freeradius.org

[CISTRONRAD] Cistron RADIUS server
http://www.radius.cistron.nl

[RADIUSCLIv6] IPv6 Radius client
http://www.coker.com.au/portslave

[RFCTACACS] D. Carrel, Lol Grant
“The TACACS+ Protocol Version 1.78”, January 1997
http://provider.kht.ru/products/libtacplus/tac_rfc.txt

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 66 of 6868

[IMPLTAC+] Tacacs+ RPM Distribution Home Page
http://www.gazi.edu.tr/tacacs

[CISCOTAC+] ftp://ftp-eng.cisco.com/pub/tacacs/
[CMS-SEC] Pat R. Calhoun, Stephen Farrell

“Diameter CMS Security Application”, March 2002
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-cms-sec-04.txt

[DIAM-BASE] Pat R. Calhoun, John Loughney
“Diameter Base Protocol”, October 2002
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-15.txt

[DIAM-API] J. Kempf, P. Calhoun,D.Frascone
“The Diameter API”, October 2002
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-api-03.txt

[DIAM-MIPv4] Pat R. Calhoun, Tony Johansson
“Diameter Mobile IPv4 Application”, October 2002
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-mobileip-13.txt

[DIAM-MIPv6] Stefano M. Faccin, Franck Le, Charles E. Perkins
“Diameter Mobile IPv6 Application“ , September 2002
http://www.ietf.org/internet-drafts/draft-le-aaa-diameter-mobileipv6-02.txt

[AAA-MIPv6] Stefano M. Faccin, Franck Le
“Mobile IPv6 Authentication, Authorization, and Accounting Requirements”,
November 2002
http://www.ietf.org/internet-drafts/draft-le-aaa-mipv6-requirements-01.txt

[DIAM-NASREQ] Pat R. Calhoun, William Bulley
“Diameter NASREQ Application” , November 2002
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-nasreq-10.txt

[DIAM-ACCT] Jari Arkko, Pat R. Calhoun
“Diameter Accounting Extensions” , March 2001
http://www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-accounting-01.txt

[RFC2960] R. Stewart, Q. Xie
“Stream Control Transmission Protocol” , October 2000
http://www.ietf.org/rfc/rfc2960.txt

[RFC3220] C.Perkins
“IP Mobility Support for IPv4”, October 1996
http://www.ietf.org/rfc/rfc2002.txt

[RFC2630] R. Housley
“Cryptographic Message Syntax”, June 1999
http://www.ietf.org/rfc/rfc2630.txt

[SUN-IMPL] SUN DIAMETER implementation
http://playground.sun.com/diameter

[OPDIAM-SERV] Open Source Diameter Server
http://sourceforge.net/projects/diameter

[OPDIAM-TOSH] OpenDiameter
http://www.toshibaamericaresearch.com

[3GPP-25.430] 3rd Generation Partnership Project
“Technical Specification Group Radio Access Network;
UTRAN Iub interface: signalling transport
(Release 5)”

[SIP-AAA] John Loughney, Gonzalo Camarillo
“SIP-AAA Requirements”, June 2002
http://www.ietf.org/internet-drafts/draft-loughney-sip-aaa-req-01.txt

[3GPP-MIPv6] 3GPP TSG SA2 Tdoc S2-002061
www.3gpp.org/ftp/Information/WI_Sheet/S2-002061.pdf

[RFC2462] S. Thomson, T. Narten
“IPv6 Stateless Address Autoconfiguration”, December 1998
http://www.ietf.org/rfc/rfc2462.txt

[D-DHCPv6] R. Droms, J. Bound
“Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, November 2002
http://www.ietf.org/internet-drafts/draft-ietf-dhc-dhcpv6-28.txt

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 67 of 6868

[RFC2486] B. Aboba, M. Beadles
“The Network Access Identifier”, January 1999
http://www.ietf.org/rfc/rfc2486.txt

[PANA-WG] Protocol for carrying Authentication for Network Access (PANA)
http://www.ietf.org/html.charters/pana-charter.html

[PANA-USGSCN] Yoshihiro Ohba, Subir Das
“Problem Statement and Usage Scenarios for PANA”, October 2002
http://www.ietf.org/internet-drafts/draft-ietf-pana-usage-scenarios-03.txt

[PANA-REQTER] Reinaldo Penno, Alper E. Yegin
“Protocol for Carrying Authentication for Network Access (PANA) Requirements
and Terminology”, April 2003
http://www.ietf.org/internet-drafts/draft-ietf-pana-requirements-04.txt

[PANA-THREAT] Mohan Parthasarathy
“PANA Threat Analysis and security requirements” , October 2002
http://www.ietf.org/internet-drafts/draft-ietf-pana-threats-eval-00.txt

[EAP-SIM6] Timothy J. Kniveton, Jari T. Malinen
“SIM Authentication EAP extension over AAAv6 (SIM6)” , July 2002
http://www.ietf.org/internet-drafts/draft-kniveton-sim6-01.txt

[SNARD] Alper E. Yegin, Xiaoning He
“Secure Network Access Using Router Discovery and AAA”, November 2001
http://www.yegin.org/alper/draft-yegin-unap-snard-00.txt

[SNARD-PRES] Alper E. Yegin
“Secure Network Access Using Router Discovery and AAA” , April 2002
yegin.org/alper/snard.pdf

[RFC2284] L. Blunk, J. Vollbrecht
“PPP Extensible Authentication Protocol (EAP)”, March 1998
http://www.ietf.org/rfc/rfc2284.txt

[RFC2104] H. Krawczyk, M. Bellare
“HMAC: Keyed-Hashing for Message Authentication” , February 1997
http://www.ietf.org/rfc/rfc2104.txt

[ROE-MIP] M.roe, T.Aura
“Authentication of Mobile IPv6 Binding Updates and Acknowledgments”,
February 2002
http://research.microsoft.com/users/mroe/cam-v3.pdf

[AUTH-MIP] John C. Mitchell, A. Datta
“Authentication for Mobile IPv6”, April 2002

[AUTH-PBK] Scott Bradner, Allison Mankin
“A Framework for Purpose Built Keys (PBK)”, November 2002
http://www.ietf.org/internet-drafts/draft-bradner-pbk-frame-03.txt

[AUTH-DH] F.Le, S.M. Faccin
“Dynamic Diffie Hellman based Key Distribution for Mobile IPv6”, April 2002
Internet draft

[D-MIPv6-19] David B. Johnson, Charles E. Perkins
“Mobility Support in IPv6”, October 2002
http://www.ietf.org/internet-drafts/draft-ietf-mobileip-ipv6-19.txt

[RFC2002] C. Perkins
"IP Mobility Support", October 1996
http://www.ietf.org/rfc/rfc2002.txt

[RFC3012] C. Perkins, P. Calhoun
“Mobile IPv4 Challenge/Response Extensions” , November 2000
http://www.ietf.org/rfc/rfc3012.txt

[IEEE802] 802.1x - Port Based Network Access Control
http://www.ieee802.org/1/pages/802.1x.html

[RFC2461] T. Narten, E. Nordmark
“Neighbor Discovery for IP Version 6 (IPv6)”, December 1998
http://www.ietf.org/rfc/rfc2461.txt

[SUN-FREE] SUN Freeware for Solaris
http://www.sunfreeware.com/

[SUN-PING] Pat R. Calhoun, Dave Frascone
“Diameter Sun Ping Extensions”, May 2001
http://www.diameter.org/drafts/latest/draft-calhoun-diameter-sun-ping-02.txt

IST-2001-32161 Euro6IX TR4.1A.7: AAA for IPv6 protocol

25/02/2003 – v1.2 Page 68 of 6868

[RFC2401] S. Kent, R. Atkinson
“Security Architecture for the Internet Protocol”, November 1998
http://www.ietf.org/rfc/rfc2401.txt

[MOBYDICK] D0401 “Design and Specification of an AAAC Architecture draft on
Administrative, heterogeneous, multi-provider, and mobile IPv6 sub-networks”
December 2001
http://www.ist-mobydick.org

		2003-02-25T12:16:56+0100
	Madrid
	Jordi Palet Martinez
	Soy el autor de este documento

