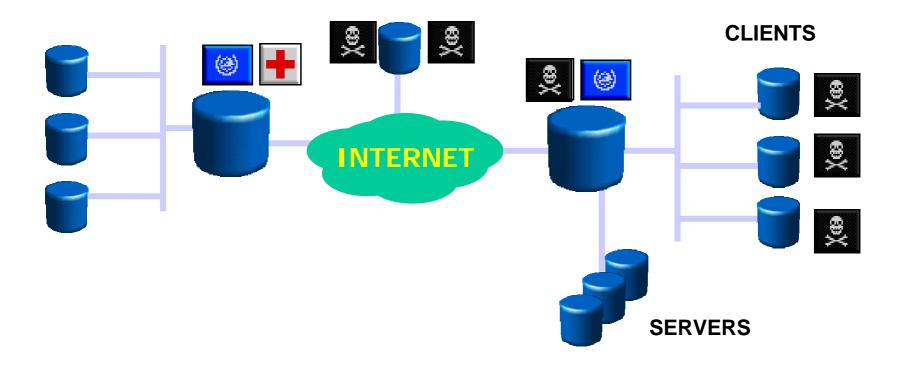
IPv6 Distributed Security Activity Status

Alvaro Vives (alvaro.vives@consulintel.es)
Jordi Palet (jordi.palet@consulintel.es)
Gregorio Martinez (gregorio@um.es)
Antonio Gomez Skarmeta (skarmeta@um.es)
Pekka Savola (psavola@funet.fi)



Motivation

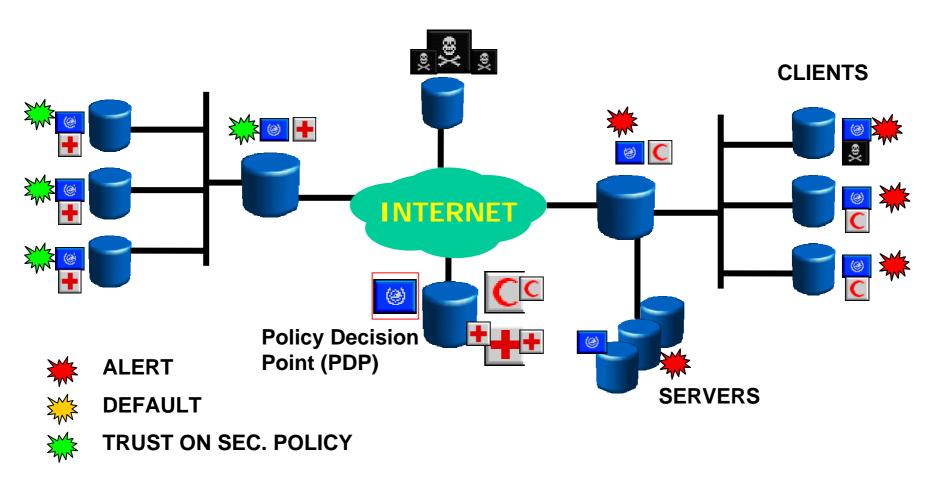
- How would the deployment of IPv6 affect the security of a network?
- IPv6 enabled devices and networks bring some issues to be taken into account by security administrators:
 - End-2-end communications
 - IPsec in all IPv6 stacks
 - Increased number of IP devices
 - Increased number of "nomadic" devices
- Identify IPv6 Issues that justify the need of a new security model

Network-based Security Model (I)

■ THREAT ■ Sec. Policy 1 Sec. Policy 2 Policy Enforcement Point (PEP)

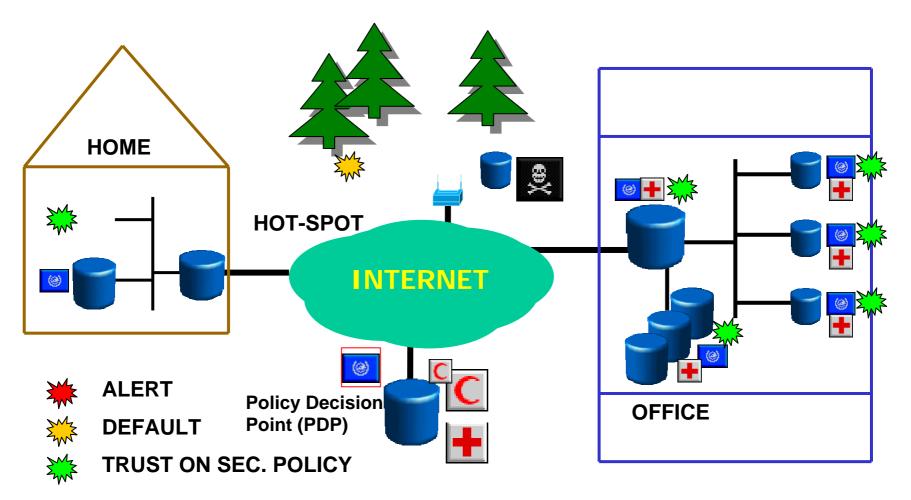
Network-based Security Model (II)

Main Assumptions:


- Threats come from "outside"
- Protected nodes won't go "outside"
- No backdoors (ADSL, WLAN, etc.)

Main Drawbacks:

- Centralized model
- Do not address threats coming from inside
- FW usually acts as NAT/Proxy
- Special solutions are needed for Transport Mode Secured Communications



Host-based Security Model (I)

■ THREAT ► Sec. Policy 1 Sec. Policy 2 Policy Enforcement Point (PEP)

Host-based Security Model (II)

■ THREAT B Sec. Policy 1 **Sec.** Policy 2 Policy Enforcement Point (PEP)

Host-based Security Model (III)

 BASIC IDEA: Security Policy centrally defined and distributed to PEPs. The network entities will authenticate themselves in order to be trusted.

THREE elements:

- Policy Specification Language
- Policy Exchange Protocol
- Authentication of Entities

Host-based Security Model (IV)

Main Assumptions:

- Threats come from anywhere in the network
- Each host can be uniquely and securely identified
- Security could be applied in one or more of the following layers: network, transport and application

Main Drawbacks:

- Complexity
- Uniqueness and secured identification of hosts is not trivial
- Policy updates have to be accomplished in an efficient manner
- A compromised host still is a problem
 - But "isolating" it could be a solution

Host-based Security Model (V)

Main Advantages:

- Protects against internal attacks
- Don't depend on where the host is connected
- Still maintain the centralized control
- Enables the end-2-end communication model, both secured or not
- Better decision could be taken based on host-specific info.
- Enables a better collection of audit info

IPv6 Issues (I)

1. End-2-end

Any host must be reachable from anywhere.
 NAT/Proxy is not desired.

2. Encrypted Traffic

For example IPsec ESP Transport Mode Traffic

3. Mobility

 Both Mobile IP and the increase of "portable" IP devices will mean they will be in "out-of-control" networks

4. Addresses

- Much more addresses -> hosts with more than one
- Randomly generated addresses
- Link-local Addresses

IPv6 Issues (II)

5. Neighbor Discovery

 RA, RS, NA, NS and Redirect Messages could be used in a malicious way -> SEND

6. Embedded Devices

 Number of devices with almost no resources to perform security tasks -> should be taken into account in a possible solution

Requirements towards a Solution

- Dynamic security policy specification language, exchange protocol and server
- Authentication of entities
- Support of SEND protocol
- Support for unmanaged nodes/devices
- Control and node/network partition mechanism
 - Securization of the rest of the network in case of a thread, even if internal
- Alert/notification mechanism
 - Facilitate the inter-node and/or node-policy server communication
- Node or host firewall, with a secure "default configuration", that can be updated by a trusted dynamic security policy server. Should also include functionalities such as:
 - Integral thread protection
 - Resolution and arbitration of conflicts between different security policies
 - Support for end-to-end application level security (i.e., Web Services security standards)
 - Intrusion detection
 - Collection of audit information
- Optionally it could also include:
 - Anti-virus
 - Anti-spam

Next Steps

- Get inputs from the WG and security area
- Continue the work
 - Solutions
 - Implementation
 - Trial in real networks, not just labs

Thanks!

Questions?